Path planning for active SLAM based on deep reinforcement learning under unknown environments

被引:68
作者
Wen, Shuhuan [1 ]
Zhao, Yanfang [1 ]
Yuan, Xiao [1 ]
Wang, Zongtao [1 ]
Zhang, Dan [2 ]
Manfredi, Luigi [3 ]
机构
[1] Yanshan Univ, Key Lab Ind Comp Control Engn Hebei Prov, Qinhuangdao 066004, Hebei, Peoples R China
[2] York Univ, Lassonde Sch Engn, Dept Mech Engn, Toronto, ON, Canada
[3] Univ Dundee, Inst Med Sci & Technol IMSaT, Dundee, Scotland
基金
中国国家自然科学基金;
关键词
Path planning; FastSLAM; Deep reinforcement learning; LOCALIZATION;
D O I
10.1007/s11370-019-00310-w
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Autonomous navigation in complex environment is an important requirement for the design of a robot. Active SLAM (simultaneous localization and mapping) combining, which combine path planning with SLAM, is proposed to improve the ability of autonomous navigation in complex environment. In this paper, fully convolutional residual networks are used to recognize the obstacles to get depth image. The avoidance obstacle path is planned by Dueling DQN algorithm in the robot's navigation; at the same time, the 2D map of the environment is built based on FastSLAM. The experiments show that the proposed algorithm can successfully identify and avoid moving and static obstacles with different quantities in the environment, and realize the autonomous navigation of the robot in a complex environment.
引用
收藏
页码:263 / 272
页数:10
相关论文
共 22 条
[1]  
[Anonymous], 2009, AUTONOMOUS LAND VEHI
[2]  
[Anonymous], 2015, ARXIV151104668
[3]  
Chanier Francois, 2008, 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2008), P533, DOI 10.1109/MFI.2008.4648050
[4]  
Chaves SM, 2014, IEEE INT C INT ROBOT, P3073, DOI 10.1109/IROS.2014.6942987
[5]   Double-task Deep Q-learning with Multiple views [J].
Chen, Jun ;
Bai, Tingzhu ;
Huang, Xiangsheng ;
Guo, Xian ;
Yang, Jianing ;
Yao, Yuxing .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :1050-1058
[6]   Experimental validation of FastSLAM algorithm integrated with a linear features based map [J].
Fulgenzi, Chiara ;
Ippoliti, Gianluca ;
Longhi, Sauro .
MECHATRONICS, 2009, 19 (05) :609-616
[7]   A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots [J].
Giusti, Alessandro ;
Guzzi, Jerome ;
Ciresan, Dan C. ;
He, Fang-Lin ;
Rodriguez, Juan P. ;
Fontana, Flavio ;
Faessler, Matthias ;
Forster, Christian ;
Schmidhuber, Jurgen ;
Di Caro, Gianni ;
Scaramuzza, Davide ;
Gambardella, Luca M. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2016, 1 (02) :661-667
[8]  
Gouaillier D., 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2010), P448, DOI 10.1109/ICHR.2010.5686291
[9]  
Gruslys A, 2017, ARXIV170404651V2
[10]   A Square Root Unscented FastSLAM With Improved Proposal Distribution and Resampling [J].
Havangi, Ramazan ;
Taghirad, Hamid D. ;
Nekoui, Mohammad Ali ;
Teshnehlab, Mohammad .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (05) :2334-2345