Applying rough sets to data tables containing missing values

被引:0
|
作者
Nakata, Michinori [1 ]
Sakai, Hiroshi [2 ]
机构
[1] Josai Int Univ, Fac Management & Informat Sci, 1 Gumyo, Chiba 2838555, Japan
[2] Kyushu Inst Technol, Fac Engn, Dept Math & Comp Aided Sci, Kitakyushu, Fukuoka 8048550, Japan
来源
ROUGH SETS AND INTELLIGENT SYSTEMS PARADIGMS, PROCEEDINGS | 2007年 / 4585卷
基金
日本学术振兴会;
关键词
rough sets; missing values; possible equivalence classes; lower and upper approximations;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rough sets are applied to data tables containing missing values. Discernibility and indiscernibility between a missing value and another value are considered simultaneously. A family of possible equivalence classes is obtained, in which each equivalence class has the possibility that it is an actual one. By using the family of possible equivalence classes, we can derive lower and upper approximations, even if the approximations are not obtained by previous methods. Furthermore, the lower and upper approximations coincide with those obtained from methods of possible worlds.
引用
收藏
页码:181 / +
页数:4
相关论文
共 50 条
  • [1] Applying Rough Sets to Information Tables Containing Missing Values
    Nakata, Michinori
    Sakai, Hiroshi
    ISMVL: 2009 39TH IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, 2009, : 286 - +
  • [2] Applying rough sets to information tables containing Probabilistic values
    Nakata, Michinori
    Sakai, Hiroshi
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4617 : 282 - +
  • [3] Applying rough sets to data tables containing possibilistic information
    Nakata, Michinori
    Sakai, Hiroshi
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2006, 4062 : 147 - 155
  • [4] Dual Rough Approximations in Information Tables with Missing Values
    Nakata, Michinori
    Sakai, Hiroshi
    ROUGH SETS, FUZZY SETS, DATA MINING AND GRANULAR COMPUTING, RSFDGRC 2011, 2011, 6743 : 36 - 43
  • [5] Applying rough sets to data tables containing imprecise information under probabilistic interpretation
    Nakata, Michinori
    Sakai, Hiroshi
    ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2006, 4259 : 213 - 223
  • [6] Kryszkiewicz's Relation for Indiscernibility of Objects in Data Tables Containing Missing Values
    Nakata, Michinori
    Saito, Norio
    Sakai, Hiroshi
    Fujiwara, Takeshi
    ROUGH SETS, IJCRS 2023, 2023, 14481 : 170 - 184
  • [7] Variable Precision Rough Set Model in Information Tables with Missing Values
    Kusunoki, Yoshifumi
    Inuiguchi, Masahiro
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2011, 15 (01) : 110 - 116
  • [8] Rule Induction Based on Rough Sets from Information Tables Containing Possibilistic Information
    Nakata, Michinori
    Sakai, Hiroshi
    PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 91 - 96
  • [9] Expressing Rough Sets with Possibility Distributions in Possibilistic Data Tables
    Nakata, Michinori
    Sakai, Hiroshi
    Fujiwara, Takeshi
    INTELLIGENT AND FUZZY SYSTEMS, VOL 3, INFUS 2024, 2024, 1090 : 699 - 706
  • [10] Adapting Fuzzy Rough Sets for Classification with Missing Values
    Lenz, Oliver Urs
    Peralta, Daniel
    Cornelis, Chris
    ROUGH SETS (IJCRS 2021), 2021, 12872 : 192 - 200