Exceptional jumps of Picard ranks of reductions of K3 surfaces over number fields

被引:8
作者
Shankar, Ananth N. [1 ]
Shankar, Arul [2 ]
Tang, Yunqing [3 ]
Tayou, Salim [4 ]
机构
[1] MIT, Dept Math, 182 Mem Dr, Cambridge, MA 02139 USA
[2] Univ Toronto, Dept Math, 215 Huron St, Toronto, ON M5T 1R2, Canada
[3] Univ Calif Berkeley, Dept Math, Evans Hall, Berkeley, CA 94720 USA
[4] Ecole Normale Super, 45 Rue dUlm, F-75230 Paris, France
基金
欧洲研究理事会; 加拿大自然科学与工程研究理事会;
关键词
RATIONAL CURVES; SHIMURA VARIETIES; EISENSTEIN SERIES; ABELIAN-VARIETIES; FALTINGS HEIGHTS; MODULAR-FORMS; DERIVATIVES; CYCLES; CONJECTURE; LATTICES;
D O I
10.1017/fmp.2022.14
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a K3 surface X over a number field K with potentially good reduction everywhere, we prove that the set of primes of K where the geometric Picard rank jumps is infinite. As a corollary, we prove that either X-(K) over bar has infinitely many rational curves or X has infinitely many unirational specialisations. Our result on Picard ranks is a special case of more general results on exceptional classes for K3 type motives associated to GSpin Shimura varieties. These general results have several other applications. For instance, we prove that an abelian surface over a number field K with potentially good reduction everywhere is isogenous to a product of elliptic curves modulo infinitely many primes of K.
引用
收藏
页数:49
相关论文
共 65 条
[1]  
Abramowitz M., 1964, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, V55, DOI DOI 10.1119/1.15378
[2]   On the Shafarevich and Tate conjectures for hyperkahler varieties [J].
Andre, Y .
MATHEMATISCHE ANNALEN, 1996, 305 (02) :205-248
[3]   Faltings heights of abelian varieties with complex multiplication [J].
Andreatta, Fabrizio ;
Goren, Eyal Z. ;
Howard, Benjamin ;
Pera, Keerthi Madapusi .
ANNALS OF MATHEMATICS, 2018, 187 (02) :391-531
[4]   Height pairings on orthogonal Shimura varieties [J].
Andreatta, Fabrizio ;
Goren, Eyal Z. ;
Howard, Benjamin ;
Pera, Keerthi Madapusi .
COMPOSITIO MATHEMATICA, 2017, 153 (03) :474-534
[5]  
[Anonymous], 1982, Lecture Notes in Math., DOI [10.1007/978-3-540-38955-24, 10.1007/978-3-540-38955-, DOI 10.1007/978-3-540-38955]
[6]  
[Anonymous], 1983, Lecture Notes in Math.
[7]  
[Anonymous], Graduate Studies in Mathematics
[8]  
[Anonymous], 1974, PUBL MATH I HAUTES T, DOI DOI 10.1007/BF02684373
[9]   CLIFFORD-ALGEBRAS AND SPINOR NORMS OVER A COMMUTATIVE RING [J].
BASS, H .
AMERICAN JOURNAL OF MATHEMATICS, 1974, 96 (01) :156-206
[10]  
Becker H., 1992, WHAT IS CASE EXPLORI