Mitochondrial Iron Metabolism and Its Role in Neurodegeneration

被引:153
作者
Horowitz, Maxx P. [1 ,2 ,3 ]
Greenamyre, J. Timothy [1 ,3 ,4 ]
机构
[1] Univ Pittsburgh, Ctr Neurosci, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Med Scientist Training Program, Pittsburgh, PA 15260 USA
[3] Univ Pittsburgh, Dept Neurol, Pittsburgh, PA 15260 USA
[4] Univ Pittsburgh, Pittsburgh Inst Neurodegenerat Dis, Pittsburgh, PA 15260 USA
关键词
Alzheimer's disease; FBXL5; iron; iron regulatory protein; iron-sulfur cluster; mitochondria; neurodegeneration; Parkinson's disease; AMYLOID PRECURSOR PROTEIN; SULFUR CLUSTER BIOGENESIS; PARKINSONS-DISEASE; ALZHEIMERS-DISEASE; SUBSTANTIA-NIGRA; 5'-UNTRANSLATED REGION; TRANSFERRIN RECEPTOR-2; REGULATORY PROTEIN-1; FERRITIN EXPRESSION; IN-VIVO;
D O I
10.3233/JAD-2010-100354
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In addition to their well-established role in providing the cell with ATP, mitochondria are the source of iron-sulfur clusters (ISCs) and heme - prosthetic groups that are utilized by proteins throughout the cell in various critical processes. The post-transcriptional system that mammalian cells use to regulate intracellular iron homeostasis depends, in part, upon the synthesis of ISCs in mitochondria. Thus, proper mitochondrial function is crucial to cellular iron homeostasis. Many neurodegenerative diseases are marked by mitochondrial impairment, brain iron accumulation, and oxidative stress - pathologies that are interrelated. This review discusses the physiological role that mitochondria play in cellular iron homeostasis and, in so doing, attempts to clarify how mitochondrial dysfunction may initiate and/or contribute to iron dysregulation in the context of neurodegenerative disease. We review what is currently known about the entry of iron into mitochondria, the ways in which iron is utilized therein, and how mitochondria are integrated into the system of iron homeostasis in mammalian cells. Lastly, we turn to recent advances in our understanding of iron dysregulation in two neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), and discuss the use of iron chelation as a potential therapeutic approach to neurodegenerative disease.
引用
收藏
页码:S551 / S568
页数:18
相关论文
共 115 条
[81]   Regulation of Mitochondrial Iron Import through Differential Turnover of Mitoferrin 1 and Mitoferrin 2 [J].
Paradkar, Prasad N. ;
Zumbrennen, Kimberley B. ;
Paw, Barry H. ;
Ward, Diane M. ;
Kaplan, Jerry .
MOLECULAR AND CELLULAR BIOLOGY, 2009, 29 (04) :1007-1016
[82]   The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis [J].
Pondarré, C ;
Antiochos, BB ;
Campagna, DR ;
Greer, EL ;
Deck, KM ;
McDonald, A ;
Han, AP ;
Medlock, A ;
Kutok, JL ;
Anderson, SA ;
Eisenstein, RS ;
Fleming, MD .
HUMAN MOLECULAR GENETICS, 2006, 15 (06) :953-964
[83]  
QUERFURTH HW, N ENGL J MED, V362, P329
[84]   Reduction of iron-regulated amyloid precursor protein and β-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures:: implications for iron chelation in Alzheimer's disease [J].
Reznichenko, L ;
Amit, T ;
Zheng, H ;
Avramovich-Tirosh, Y ;
Youdim, MBH ;
Weinreb, O ;
Mandel, S .
JOURNAL OF NEUROCHEMISTRY, 2006, 97 (02) :527-536
[85]   Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease -: A pilot phase 2 clinical trial [J].
Ritchie, CW ;
Bush, AI ;
Mackinnon, A ;
Macfarlane, S ;
Mastwyk, M ;
MacGregor, L ;
Kiers, L ;
Cherny, R ;
Li, QX ;
Tammer, A ;
Carrington, D ;
Mavros, C ;
Volitakis, I ;
Xilinas, M ;
Ames, D ;
Davis, S ;
Volitakis, I ;
Xilinas, M ;
Ames, D ;
Davis, S ;
Beyreuther, K ;
Tanzi, RE ;
Masters, CL .
ARCHIVES OF NEUROLOGY, 2003, 60 (12) :1685-1691
[86]   An iron-responsive element type II in the 5′-untranslated region of the Alzheimer's amyloid precursor protein transcript [J].
Rogers, JT ;
Randall, JD ;
Cahill, CM ;
Eder, PS ;
Huang, XD ;
Gunshin, H ;
Leiter, L ;
McPhee, J ;
Sarang, SS ;
Utsuki, T ;
Greig, NH ;
Lahiri, DK ;
Tanzi, RE ;
Bush, AI ;
Giordano, T ;
Gullans, SR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (47) :45518-45528
[87]   Iron-sulfur cluster biogenesis and human disease [J].
Rouault, Tracey A. ;
Tong, Wing Hang .
TRENDS IN GENETICS, 2008, 24 (08) :398-407
[88]   Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells [J].
Rutherford, JC ;
Bird, AJ .
EUKARYOTIC CELL, 2004, 3 (01) :1-13
[89]   An E3 Ligase Possessing an Iron-Responsive Hemerythrin Domain Is a Regulator of Iron Homeostasis [J].
Salahudeen, Ameen A. ;
Thompson, Joel W. ;
Ruiz, Julio C. ;
Ma, He-Wen ;
Kinch, Lisa N. ;
Li, Qiming ;
Grishin, Nick V. ;
Bruick, Richard K. .
SCIENCE, 2009, 326 (5953) :722-726
[90]   Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson's disease [J].
Salazar, Julio ;
Mena, Natalia ;
Hunot, Stephane ;
Prigent, Annick ;
Alvarez-Fischer, Daniel ;
Arredondo, Miguel ;
Duyckaerts, Charles ;
Sazdovitch, Veronique ;
Zhao, Lin ;
Garrick, Laura M. ;
Nunez, Marco T. ;
Garrick, Michael D. ;
Raisman-Vozari, Rita ;
Hirsch, Etienne C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (47) :18578-18583