Tsallis entropy and entanglement constraints in multiqubit systems

被引:116
作者
Kim, Jeong San [1 ]
机构
[1] Univ Calgary, Inst Quantum Informat Sci, Calgary, AB T2N 1N4, Canada
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 06期
关键词
QUANTUM; STATE;
D O I
10.1103/PhysRevA.81.062328
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that the restricted shareability and distribution of multiqubit entanglement can be characterized by Tsallis-q entropy. We first provide a class of bipartite entanglement measures named Tsallis-q entanglement, and provide its analytic formula in two-qubit systems for 1 <= q <= 4. For 2 <= q <= 3, we show a monogamy inequality of multiqubit entanglement in terms of Tsallis-q entanglement, and we also provide a polygamy inequality using Tsallis-q entropy for 1 <= q <= 2 and 3 <= q <= 4.
引用
收藏
页数:8
相关论文
共 28 条
  • [1] Stability of Tsallis entropy and instabilities of Renyi and normalized Tsallis entropies:: A basis for q-exponential distributions -: art. no. 046134
    Abe, S
    [J]. PHYSICAL REVIEW E, 2002, 66 (04): : 6
  • [2] Nonadditive conditional entropy and its significance for local realism
    Abe, S
    Rajagopal, AK
    [J]. PHYSICA A, 2001, 289 (1-2): : 157 - 164
  • [3] Conditional q-entropies and quantum separability:: a numerical exploration
    Batle, J
    Plastino, AR
    Casas, M
    Plastino, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (48): : 10311 - 10324
  • [4] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [5] Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
  • [6] Polygamy of distributed entanglement
    Buscemi, Francesco
    Gour, Gilad
    Kim, Jeong San
    [J]. PHYSICAL REVIEW A, 2009, 80 (01):
  • [7] Distributed entanglement
    Coffman, V
    Kundu, J
    Wootters, WK
    [J]. PHYSICAL REVIEW A, 2000, 61 (05): : 5
  • [8] Unlocking hidden entanglement with classical information
    Cohen, O
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (11) : 2493 - 2496
  • [9] Three qubits can be entangled in two inequivalent ways
    Dur, W.
    Vidal, G.
    Cirac, J.I.
    [J]. Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06): : 062314 - 062311
  • [10] Dual monogamy inequality for entanglement
    Gour, Gilad
    Bandyopadhyay, Somshubhro
    Sanders, Barry C.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (01)