Understanding behaviors of compression ignition engine running on metal nanoparticle additives-included fuels: A control comparison between biodiesel and diesel fuel

被引:78
作者
Hoang, Anh Tuan [1 ]
Le, Minh Xuan [2 ]
Nizetic, Sandro [3 ]
Huang, Zuohua [4 ]
Agbulut, Umit [5 ]
Veza, Ibham [6 ]
Said, Zafar [7 ,8 ]
Le, Anh Tuan [9 ]
Tran, Viet Dung [10 ]
Nguyen, Xuan Phuong [10 ]
机构
[1] HUTECH Univ, Inst Engn, Ho Chi Minh City, Vietnam
[2] Dong A Univ, Fac Automot Engn, Da Nang, Vietnam
[3] Univ Split, FESB, Rudjera Boskov 32, Split 21000, Croatia
[4] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[5] Duzce Univ, Fac Engn, Dept Mech Engn, TR-81620 Duzce, Turkey
[6] Univ Teknikal Malaysia Melaka, Fac Mech Engn, Durian Tunggal 76100, Melaka, Malaysia
[7] Univ Sharjah, Dept Sustainable & Renewable Energy Engn, POB 27272, Sharjah, U Arab Emirates
[8] Natl Univ Sci & Technol NUST, US Pakistan Ctr Adv Studies Energy USPCAS E, Islamabad, Pakistan
[9] Hanoi Univ Sci & Technol, Sch Mech Engn, Hanoi, Vietnam
[10] Ho Chi Minh City Univ Transport, PATET Res Grp, Ho Chi Minh City, Vietnam
关键词
Metal nanoparticle; Biodiesel; Diesel engine; Engine performance; Emission characteristic; Tribology behavior; CERIUM OXIDE NANOPARTICLES; OIL METHYL-ESTER; WALLED CARBON NANOTUBES; EMISSION CHARACTERISTICS; COMBUSTION CHARACTERISTICS; CI ENGINE; EXHAUST EMISSIONS; ALUMINUM-OXIDE; NANO-ADDITIVES; ZINC-OXIDE;
D O I
10.1016/j.fuel.2022.124981
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent years, searching for efficient solutions to improve the emission and performance characteristics of diesel engines is considered as one of the essential and urgent work. Metal nanoparticles with a large surface area and high heat transfer coefficient could provide the impressive additive ability to the fuel reactivity and at-omization. Therefore, the critical role of metal nanoparticles in the support of diesel engine behaviors using biodiesel and diesel is thoroughly evaluated in this current review. Indeed, preparation methods and critical properties of metal nanoparticles and metal nanoparticles-laden fuels are fully introduced. More importantly, the performance, combustion, emission characteristics, and tribology behaviors of diesel engines running on metal nanoparticles-laden biodiesel are compared to diesel fuel in detail. Generally, metal nanoparticles-included biodiesel facilitates the formation of a more homogeneous oxygen-containing mixture of fuel-air, resulting in a more complete combustion process than that of diesel fuel. As a result, the use of biodiesel with the presence of metal nanoparticles is considered as the potential strategy for promoting spay and atomization, enhancing the combustion process, increasing brake thermal efficiency (BTE), reducing toxic emissions (including carbon monoxide (CO), unburnt hydrocarbon (HC), and smoke), and improving tribology characteristics. However, some drawbacks are also indicated, such as increased NOx emission and brake-specific fuel consumption. In addition, it is also concluded that studies on other environmental impacts (such as PM emission), the stable properties of metal nanoparticles, and economic aspects should be made more extensively before commercial applications of metal nanoparticles in the real world.
引用
收藏
页数:45
相关论文
共 365 条
[51]  
Basha J.S., 2011, Int J of Ind Engg Tech, P53
[52]   Impact of Carbon Nanotubes and Di-Ethyl Ether as additives with biodiesel emulsion fuels in a diesel engine - An experimental investigation [J].
Basha, J. Sadhik .
JOURNAL OF THE ENERGY INSTITUTE, 2018, 91 (02) :289-303
[53]   Performance, emission and combustion characteristics of a diesel engine using Carbon Nanotubes blended Jatropha Methyl Ester Emulsions [J].
Basha, J. Sadhik ;
Anand, R. B. .
ALEXANDRIA ENGINEERING JOURNAL, 2014, 53 (02) :259-273
[54]   The influence of nano additive blended biodiesel fuels on the working characteristics of a diesel engine [J].
Basha, J. Sadhik ;
Anand, R. B. .
JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2013, 35 (03) :257-264
[55]   An experimental investigation in a diesel engine using carbon nanotubes blended water-diesel emulsion fuel [J].
Basha, J. Sadhik ;
Anand, R. B. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2011, 225 (A3) :279-288
[56]   An Experimental Study in a CI Engine Using Nanoadditive Blended Water-Diesel Emulsion Fuel [J].
Basha, J. Sadhik ;
Anand, R. B. .
INTERNATIONAL JOURNAL OF GREEN ENERGY, 2011, 8 (03) :332-348
[57]   A review of the effects of catalyst and additive on biodiesel production, performance, combustion and emission characteristics [J].
Basha, Syed Ameer ;
Gopal, K. Raja .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (01) :711-717
[58]   Combustion and heat transfer characteristics of nanofluid fuel droplets: A short review [J].
Basu, Saptarshi ;
Miglani, Ankur .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 96 :482-503
[59]   Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends [J].
Bayindir, Hasan ;
Isik, Mehmet Zerrakki ;
Argunhan, Zeki ;
Yucel, Halit Lutfu ;
Aydin, Huseyin .
ENERGY, 2017, 123 :241-251
[60]   Mixed modified Fe2O3-WO3 as new fuel borne catalyst (FBC) for biodiesel fuel [J].
Bazooyar, Bahamin ;
Hosseini, Seyyed Yaghoob ;
Begloo, Solat Moradi Ghoje ;
Shariati, Ahmad ;
Hashemabadi, Seyed Hassan ;
Shaahmadi, Fariborz .
ENERGY, 2018, 149 :438-453