Experimental study of fractal clusters formation from nanoparticles synthesized by atmospheric pressure plasma-enhanced chemical vapor deposition

被引:5
作者
Mishin, Maxim V. [1 ]
Protopopova, Vera S. [2 ]
Alexandrov, Sergey E. [1 ]
机构
[1] St Petersburg State Polytech Univ, Dept Phys Chem & Technol Microsyst Devices, St Petersburg 195251, Russia
[2] Aalto Univ, Dept Mat Sci & Engn, Aalto 00076, Finland
关键词
Self-assembly phenomenon; Fractal clusters of nanoparticles; Surface agglomeration; AP-PECVD; Empirical model; Electrical breakdown; SILICON; TEMPERATURE; FILMS;
D O I
10.1007/s11051-014-2719-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper presents the experimental results from the fractal structures formation from nanoparticles of silicone dioxide deposited on the silicon substrate surface. Nanoparticles are synthesized by atmospheric pressure plasma-enhanced chemical vapor deposition with the use of capacitively coupled radio frequency (13.56 MHz) discharge sustained in helium atmosphere. Tetraethoxysilane is chosen as the test precursor. Correlation between the morphology of obtained deposits and the process parameters is found. The capability of nanoparticles movement along the deposit surface in local near-surface electric field is demonstrated. The empirical model that satisfactorily explained the mechanism of fractal clusters formation from nanoparticles on the substrate surface is developed. The model indicates that the dynamics of deposit morphology variations is determined by two competing processes: electrical charge transfer by nanoparticles to the deposit surface and electrical charge running off over the surface under conditions of changeable conductivity of the deposit surface.
引用
收藏
页数:8
相关论文
共 34 条
  • [1] Formation of Fractal Structures from Silicon Dioxide Nanoparticles Synthesized by RF Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition
    Alexandrov, S. E.
    Kretusheva, I. V.
    Mishin, M. V.
    Yasenovets, G. M.
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (09) : 7969 - 7973
  • [2] Atmospheric Pressure Plasma Enhanced CVD of Fe Nanoparticles
    Alexandrov, S. E.
    Kretusheva, I. V.
    Mishin, M. V.
    [J]. EUROCVD 17 / CVD 17, 2009, 25 (08): : 943 - 951
  • [3] Remote AP-PECVD of silicon dioxide films from hexamethyldisiloxane (HMDSO)
    Alexandrov, SE
    McSporran, N
    Hitchman, ML
    [J]. CHEMICAL VAPOR DEPOSITION, 2005, 11 (11-12) : 481 - 490
  • [4] Synthesis of nanoparticles in an atmospheric pressure glow discharge
    Barankin, M. D.
    Creyghton, Y.
    Schmidt-Ott, A.
    [J]. JOURNAL OF NANOPARTICLE RESEARCH, 2006, 8 (3-4) : 511 - 517
  • [5] The effect of substrate temperature on the properties of nanostructured silicon carbide films deposited by hypersonic plasma particle deposition
    Blum, J.
    Tymiak, N.
    Neuman, A.
    Wong, Z.
    Rao, N. P.
    Girshick, S. L.
    Gerberich, W. W.
    McMurry, P. H.
    Heberlein, J. V. R.
    [J]. JOURNAL OF NANOPARTICLE RESEARCH, 1999, 1 (01) : 31 - 42
  • [6] Aluminum nitride nano-dots prepared by plasma enhanced chemical vapor deposition on Si(111)
    Bouchkour, Z.
    Tristant, P.
    Thune, E.
    Dublanche-Tixier, C.
    Jaoul, C.
    Guinebretiere, R.
    [J]. SURFACE & COATINGS TECHNOLOGY, 2011, 205 : S586 - S591
  • [7] A miniaturized catalytic gas sensor for hydrogen detection based on stabilized nanoparticles as catalytic layer
    Brauns, E.
    Morsbach, E.
    Schnurpfeil, G.
    Baeumer, M.
    Lang, W.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2013, 187 : 420 - 425
  • [8] Continuous generation of TiO2 nanoparticles by an atmospheric pressure plasma-enhanced process
    Chen, Chienchih
    Bai, Hsunling
    Chein, HungMin
    Chen, Tzu Ming
    [J]. AEROSOL SCIENCE AND TECHNOLOGY, 2007, 41 (11) : 1018 - 1028
  • [9] Porous Carbon Nanoparticle Networks with Tunable Absorbability
    Dai, Wei
    Kim, Seong Jin
    Seong, Won-Kyeong
    Kim, Sang Hoon
    Lee, Kwang-Ryeol
    Kim, Ho-Young
    Moon, Myoung-Woon
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [10] Feder J., 1988, Fractals