On the Cauchy problem for a nonlinear variational wave equation with degenerate initial data

被引:11
作者
Hu, Yanbo [1 ]
Wang, Guodong [2 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
[2] Anhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Anhui, Peoples R China
基金
美国国家科学基金会;
关键词
Variational wave equation; Degenerate hyperbolic; Cauchy problem; Weighted metric space; CONSERVATIVE SOLUTIONS; LIQUID-CRYSTALS; WEAK SOLUTIONS; UNIQUENESS; EXISTENCE; SYSTEM;
D O I
10.1016/j.na.2018.06.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is focused on a one-dimensional nonlinear variational wave equation which is the Euler-Lagrange equations of a variational principle arising in the theory of nematic liquid crystals and a few other physical contexts. We establish the local existence and uniqueness of classical solutions to its Cauchy problem with initial data given on the parabolic degenerating line. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:192 / 208
页数:17
相关论文
共 31 条
[1]   Chemically induced twist-bend nematic liquid crystals, liquid crystal dimers, and negative elastic constants [J].
Adlem, K. ;
Copic, M. ;
Luckhurst, G. R. ;
Mertelj, A. ;
Parri, O. ;
Richardson, R. M. ;
Snow, B. D. ;
Timimi, B. A. ;
Tuffin, R. P. ;
Wilkes, D. .
PHYSICAL REVIEW E, 2013, 88 (02)
[2]   Diffractive nonlinear geometrical optics for variational wave equations and the Einstein equations [J].
Ali, Giuseppe ;
Hunter, John K. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (10) :1522-1557
[3]   ORIENTATION WAVES IN A DIRECTOR FIELD WITH ROTATIONAL INERTIA [J].
Ali, Giuseppe ;
Hunter, John K. .
KINETIC AND RELATED MODELS, 2009, 2 (01) :1-37
[4]   Conservative solutions to a nonlinear variational wave equation [J].
Bressan, Alberto ;
Zheng, Yuxi .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (02) :471-497
[5]   Lipschitz Metrics for a Class of Nonlinear Wave Equations [J].
Bressan, Alberto ;
Chen, Geng .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 226 (03) :1303-1343
[6]   Uniqueness of conservative solutions for nonlinear wave equations via characteristics [J].
Bressan, Alberto .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (01) :157-169
[7]  
Bressan A, 2016, COMMUN MATH SCI, V14, P31
[8]   Unique Conservative Solutions to a Variational Wave Equation [J].
Bressan, Alberto ;
Chen, Geng ;
Zhang, Qingtian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (03) :1069-1101
[9]   On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules [J].
Dozov, I .
EUROPHYSICS LETTERS, 2001, 56 (02) :247-253
[10]   Singularities of a variational wave equation [J].
Glassey, RT ;
Hunter, JK ;
Zheng, YX .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 129 (01) :49-78