Determination of Aortic Characteristic Impedance and Total Arterial Compliance From Regional Pulse Wave Velocities Using Machine Learning: An in-silico Study

被引:19
作者
Bikia, Vasiliki [1 ]
Rovas, Georgios [1 ]
Pagoulatou, Stamatia [1 ]
Stergiopulos, Nikolaos [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Bioengn, Lab Hemodynam & Cardiovasc Technol, Lausanne, Switzerland
关键词
non-invasive monitoring; aorta; arterial stiffness; vascular aging; machine learning; LEFT-VENTRICULAR MASS; INPUT IMPEDANCE; BLOOD-PRESSURE; CARDIAC-OUTPUT; CARDIOVASCULAR MORTALITY; NORMAL LIMITS; ALL-CAUSE; STIFFNESS; VALIDATION; TIME;
D O I
10.3389/fbioe.2021.649866
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In-vivo assessment of aortic characteristic impedance (Z(ao)) and total arterial compliance (C-T) has been hampered by the need for either invasive or inconvenient and expensive methods to access simultaneous recordings of aortic pressure and flow, wall thickness, and cross-sectional area. In contrast, regional pulse wave velocity (PWV) measurements are non-invasive and clinically available. In this study, we present a non-invasive method for estimating Z(ao) and C-T using cuff pressure, carotid-femoral PWV (cfPWV), and carotid-radial PWV (crPWV). Regression analysis is employed for both Z(ao) and C-T. The regressors are trained and tested using a pool of virtual subjects (n = 3,818) generated from a previously validated in-silico model. Predictions achieved an accuracy of 7.40%, r = 0.90, and 6.26%, r = 0.95, for Z(ao), and C-T, respectively. The proposed approach constitutes a step forward to non-invasive screening of elastic vascular properties in humans by exploiting easily obtained measurements. This study could introduce a valuable tool for assessing arterial stiffness reducing the cost and the complexity of the required measuring techniques. Further clinical studies are required to validate the method in-vivo.
引用
收藏
页数:15
相关论文
共 79 条
[1]   Improvement in blood pressure, arterial stiffness and wave reflections with a very-low-dose perindopril/indapamide combination in hypertensive patient - A comparison with atenolol [J].
Asmar, RG ;
London, GM ;
O'Rourke, ME ;
Safar, ME .
HYPERTENSION, 2001, 38 (04) :922-926
[2]   AI-Based Estimation of End-Systolic Elastance From Arm-Pressure and Systolic Time Intervals [J].
Bikia, Vasiliki ;
Adamopoulos, Dionysios ;
Pagoulatou, Stamatia ;
Rovas, Georgios ;
Stergiopulos, Nikolaos .
FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
[3]   The impact of heart rate on pulse wave velocity: an in-silico evaluation [J].
Bikia, Vasiliki ;
Stergiopulos, Nikolaos ;
Rovas, Georgios ;
Pagoulatou, Stamatia ;
Papaioannou, Theodore G. .
JOURNAL OF HYPERTENSION, 2020, 38 (12) :2451-2458
[4]   Noninvasive estimation of aortic hemodynamics and cardiac contractility using machine learning [J].
Bikia, Vasiliki ;
Papaioannou, Theodore G. ;
Pagoulatou, Stamatia ;
Rovas, Georgios ;
Oikonomou, Evangelos ;
Siasos, Gerasimos ;
Tousoulis, Dimitris ;
Stergiopulos, Nikolaos .
SCIENTIFIC REPORTS, 2020, 10 (01)
[5]   Noninvasive Cardiac Output and Central Systolic Pressure From Cuff-Pressure and Pulse Wave Velocity [J].
Bikia, Vasiliki ;
Pagoulatou, Stamatia ;
Trachet, Bram ;
Soulis, Dimitrios ;
Protogerou, Athanase D. ;
Papaioannou, Theodore G. ;
Stergiopulos, Nikos .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (07) :1968-1981
[6]   STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT [J].
BLAND, JM ;
ALTMAN, DG .
LANCET, 1986, 1 (8476) :307-310
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans [J].
Chemla, D ;
Antony, I ;
Lecarpentier, Y ;
Nitenberg, A .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2003, 285 (02) :H614-H620
[10]   Arterial pulsatile hemodynamic load induced by isometric exercise strongly predicts left ventricular mass in hypertension [J].
Chirinos, Julio A. ;
Segers, Patrick ;
Raina, Amresh ;
Saif, Hassam ;
Swillens, Abigail ;
Gupta, Amit K. ;
Townsend, Raymond ;
Emmi, Anthony G., Jr. ;
Kirkpatrick, James N. ;
Keane, Martin G. ;
Ferrari, Victor A. ;
Wiegers, Susan E. ;
Sutton, Martin G. St. John .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2010, 298 (02) :H320-H330