Central Limit Theorems for Gromov Hyperbolic Groups

被引:25
作者
Bjorklund, Michael [1 ]
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
Random walks on groups; Central limit theorems; Martingale approximations; Metric geometry; Ergodic theory; RANDOM-WALKS; LINEAR DRIFT; PRODUCTS; ESCAPE;
D O I
10.1007/s10959-009-0230-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study asymptotic properties of symmetric and nondegenerate random walks on transient hyperbolic groups. We prove a central limit theorem and a law of iterated logarithm for the drift of a random walk, extending previous results by S. Sawyer and T. Steger and of F. Ledrappier for certain CAT(-1)-groups. The proofs use a result by A. Ancona on the identification of the Martin boundary of a hyperbolic group with its Gromov boundary. We also give a new interpretation, in terms of Hilbert metrics, of the Green metric, first introduced by S. Brofferio and S. BlachSre.
引用
收藏
页码:871 / 887
页数:17
相关论文
共 36 条
[1]  
ANCONA A, 1990, SPRINGER LECT NOTES, V1427, P4
[2]  
ANCONA A, 1987, SPRINGER LECT NOTES, V1344
[3]  
[Anonymous], 1980, Asterisque
[4]  
[Anonymous], 1985, Products of Random Matrices with Applications to Schrodinger Operators
[5]   A GEOMETRIC CHARACTERIZATION OF GLEASON PARTS [J].
BEAR, HS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (03) :407-&
[6]   LIMIT THEOREMS FOR NON-COMMUTATIVE OPERATIONS .1. [J].
BELLMAN, R .
DUKE MATHEMATICAL JOURNAL, 1954, 21 (03) :491-500
[7]  
BLACHERE S, HARMONIC MEASURES VE
[8]   Asymptotic entropy and Green speed for random walks on countable groups [J].
Blachere, Sebastien ;
Haissinsky, Peter ;
Mathieu, Pierre .
ANNALS OF PROBABILITY, 2008, 36 (03) :1134-1152
[9]   Internal diffusion limited aggregation on discrete groups having exponential growth [J].
Blachere, Sebastien ;
Brofferio, Sara .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (3-4) :323-343
[10]  
Bridson M. R., 1999, GRUND MATH WISS, V319, DOI DOI 10.1007/978-3-662-12494-9