Fast radio burst dispersion measure distribution as a probe of helium reionization

被引:22
作者
Bhattacharya, Mukul [1 ,2 ,3 ,4 ]
Kumar, Pawan [5 ]
Linder, Eric, V [6 ,7 ,8 ]
机构
[1] Virginia Tech, Dept Phys, Ctr Neutrino Phys, Blacksburg, VA 24061 USA
[2] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
[4] Penn State Univ, Ctr Multimessenger Astrophys, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
[5] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA
[6] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94720 USA
[8] Nazarbayev Univ, Energet Cosmos Lab, Nur Sultan 010000, Kazakhstan
关键词
CURVATURE RADIATION; CONSTRAINTS; REDSHIFTS; MAGNETAR; BARYONS;
D O I
10.1103/PhysRevD.103.103526
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Fast radio burst (FRB) discoveries are occurring rapidly, with thousands expected from upcoming surveys. The dispersion measures (DM) observed for FRB include important information on cosmological distances and the ionization state of the universe from the redshift of emission until today. Rather than considering the DM-redshift relation, we investigate the statistical ensemble of the distribution of dispersion measures. We explore the use of this abundance information, with and without redshift information, to probe helium reionization through simulated data to redshift z = 6. Carrying out Monte Carlo simulations of FRB survey samples, we examine the effect of different source redshift distributions, host galaxy models, sudden vs gradual reionization, and covariance with cosmological parameters on determination of helium reionization properties. We find that a fluence limited survey with 104 FRBs can discriminate different helium reionization histories at similar to 6 sigma using the DM-distribution of bursts, without redshift information (and similar to 10 sigma with redshifts).
引用
收藏
页数:16
相关论文
共 69 条
  • [21] Fast radio bursts and cosmological tests
    Jaroszynski, M.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (02) : 1637 - 1644
  • [22] Fast radio bursts
    Katz, J. I.
    [J]. PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2018, 103 : 1 - 18
  • [23] HOW SOFT GAMMA REPEATERS MIGHT MAKE FAST RADIO BURSTS
    Katz, J. I.
    [J]. ASTROPHYSICAL JOURNAL, 2016, 826 (02)
  • [24] Coherent emission in fast radio bursts
    Katz, J. I.
    [J]. PHYSICAL REVIEW D, 2014, 89 (10):
  • [25] FRB coherent emission from decay of Alfven waves
    Kumar, Pawan
    Bosnjak, Zeljka
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 494 (02) : 2385 - 2395
  • [26] Use of fast radio burst dispersion measures as distance measures
    Kumar, Pawan
    Linder, Eric V.
    [J]. PHYSICAL REVIEW D, 2019, 100 (08)
  • [27] Fast radio burst source properties and curvature radiation model
    Kumar, Pawan
    Lu, Wenbin
    Bhattacharya, Mukul
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 468 (03) : 2726 - 2739
  • [28] Lau A.W.K., ARXIV200611072
  • [29] Detecting helium reionization with fast radio bursts
    Linder, Eric, V
    [J]. PHYSICAL REVIEW D, 2020, 101 (10)
  • [30] A unified picture of Galactic and cosmological fast radio bursts
    Lu, Wenbin
    Kumar, Pawan
    Zhang, Bing
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 498 (01) : 1397 - 1405