Nonmonotone derivative-free methods for nonlinear equations

被引:36
作者
Grippo, L.
Sciandrone, M.
机构
[1] CNR, Ist Anal Sistemi & Informat, I-00185 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Informat & Sistemist, I-00185 Rome, Italy
关键词
nonmonotone techniques; derivative-free linesearch; Barzilai-Borwein method; nonlinear equations; hybrid methods;
D O I
10.1007/s10589-007-9028-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we study nonmonotone globalization techniques, in connection with iterative derivative-free methods for solving a system of nonlinear equations in several variables. First we define and analyze a class of nonmonotone derivative-free linesearch techniques for unconstrained minimization of differentiable functions. Then we introduce a globalization scheme, which combines nonmonotone watchdog rules and nonmonotone linesearches, and we study the application of this scheme to some recent extensions of the Barzilai-Borwein gradient method and to hybrid stabilization algorithms employing linesearches along coordinate directions. Numerical results on a set of standard test problems show that the proposed techniques can be of value in the solution of large-dimensional systems of equations.
引用
收藏
页码:297 / 328
页数:32
相关论文
共 26 条
[1]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[2]   CONVERGENCE THEORY OF NONLINEAR NEWTON-KRYLOV ALGORITHMS [J].
BROWN, PN ;
SAAD, Y .
SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (02) :297-330
[4]  
CHAMBERLAIN RM, 1982, MATH PROGRAM STUD, V16, P1
[5]   STOPPING CRITERIA FOR LINESEARCH METHODS WITHOUT DERIVATIVES [J].
DELEONE, R ;
GAUDIOSO, M ;
GRIPPO, L .
MATHEMATICAL PROGRAMMING, 1984, 30 (03) :285-300
[6]  
Dennis, 1996, NUMERICAL METHODS UN
[7]  
Dirkse Steven P., 1995, Optim. Methods Softw., V5, P123, DOI DOI 10.1080/10556789508805606
[8]  
EISENSTAT SC, 1994, SIAM J OPTIMIZ, V4, P16
[9]  
FERRIS MC, 1996, J OPTIM THEORY APPL, V81, P815
[10]  
FLETCHER R, 2001, NA207 U DUND DEP MAT