Exact generating functions for the number of partitions into distinct parts

被引:17
作者
Baruah, Nayandeep Deka [1 ]
Begum, Nilufar Mana [1 ]
机构
[1] Tezpur Univ, Dept Math Sci, Sonitpur 784028, Assam, India
关键词
Partitions; partitions into distinct (or; odd); parts; partition congruences;
D O I
10.1142/S1793042118501191
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q(n) denote the number of partitions of a non-negative integer into distinct (or, odd) parts. We find exact generating functions for Q(5n + 1), Q(25n + 1) and Q(125n + 26). We deduce some congruences modulo 5 and 25. We employ Ramanujan's theta function identities and some identities for the Rogers-Ramanujan continued fraction.
引用
收藏
页码:1995 / 2011
页数:17
相关论文
共 11 条
[1]  
Andrews G.E., 2005, Ramanujan's Lost Notebook
[2]   Partitions associated with the Ramanujan/Watson mock theta functions ω(q), ν(q)and ϕ(q) [J].
Andrews G.E. ;
Dixit A. ;
Yee A.J. .
Research in Number Theory, 1 (1)
[3]  
Berndt B.C., 1985, Ramanujan's Notebooks
[4]  
Berndt B.C., 2006, Number Theory in the Spirit of Ramanujan
[5]  
Berndt BC, 2001, ANDREWS FESTSCHRIFT: SEVENTEEN PAPER ON CLASSICAL NUMBER THEORY AND COMBINATORICS, P39
[6]   The number of partitions into distinct parts modulo powers of 5 [J].
Lovejoy, J .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :41-46
[7]   Divisibility and distribution of partitions into distinct parts [J].
Lovejoy, J .
ADVANCES IN MATHEMATICS, 2001, 158 (02) :253-263
[8]  
Ramanujan S, 1919, P CAMB PHILOS SOC, V19, P207
[9]  
Ramanujan S., 1988, The Lost Notebook and Other Unpublished Papers
[10]  
Rodseth O., 1969, ARBOK U BERGEN MAT N, V13