Dietary restriction started after spinal cord injury improves functional recovery

被引:104
|
作者
Plunet, Ward T. [1 ]
Streijger, Femke [1 ]
Lam, Clarrie K. [1 ]
Lee, Jae H. T. [1 ]
Liu, Jie [1 ]
Tetzlaff, Wolfram [1 ,2 ,3 ]
机构
[1] Univ British Columbia, ICORD, Vancouver, BC V6T 1Z4, Canada
[2] Univ British Columbia, Dept Zool, Vancouver, BC V6T 1Z4, Canada
[3] Univ British Columbia, Dept Surg, Vancouver, BC V6T 1Z4, Canada
关键词
spinal cord injury; functional recovery; neuroprotection; intermittent-fasting; plasticity; calorie restriction;
D O I
10.1016/j.expneurol.2008.04.011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Spinal cord injury typically results in limited functional recovery. Here we investigated whether therapeutic dietary restriction, a multi-faceted, safe, and clinically-feasible treatment, can improve outcome from cervical spinal cord injury. The well-established notion that dietary restriction increases longevity has kindled interest in its potential benefits in injury and disease. When followed for several months prior to insult, prophylactic dietary restriction triggers multiple molecular responses and improves outcome in animal models of stroke and myocardial infarction. However, the efficacy of the clinically-relevant treatment of post-injury dietary restriction is unknown. Here we report that "every-other-day fasting" (EODF), a form of dietary restriction, implemented after rat cervical spinal Cord injury was neuroprotective, promoted plasticity, and improved behavioral recovery. Without causing weight loss, EODF improved gait-pattern, forelimb function during ladder-crossing, and vertical exploration. In agreement, EODF preserved neuronal integrity, dramatically reduced lesion volume by > 50%, and increased Sprouting of corticospinal axons. As expected, blood beta-hydfoxybutyrate levels, a ketone known to be neuroprotective, were increased by 2-3 fold on the fasting days. In addition, we found increased ratios of full-length to truncated trkB (receptor for brain-derived neurotrophic factor) in the spinal cord by 2-6 folds at both 5 days (lesion site) and 3 weeks after injury (caudal to lesion site) which may further enhance neuroprotection and plasticity. Because EODF is a safe, non-invasive, and low-cost treatment, it could be readily translated into the clinical setting of spinal cord injury and possibly other insults. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:28 / 35
页数:8
相关论文
共 50 条
  • [31] Sonic Hedgehog modulates the inflammatory response and improves functional recovery after spinal cord injury in a thoracic contusion-compression model
    Zhang, Hao
    Younsi, Alexander
    Zheng, Guoli
    Tail, Mohamed
    Harms, Anna-Kathrin
    Roth, Judith
    Hatami, Maryam
    Skutella, Thomas
    Unterberg, Andreas
    Zweckberger, Klaus
    EUROPEAN SPINE JOURNAL, 2021, 30 (06) : 1509 - 1520
  • [32] Curcumin improves early functional results after experimental spinal cord injury
    Cemil, Berker
    Topuz, Kivanc
    Demircan, Mehmet Nusret
    Kurt, Gokhan
    Tun, Kagan
    Kutlay, Murat
    Ipcioglu, Osman
    Kucukodaci, Zafer
    ACTA NEUROCHIRURGICA, 2010, 152 (09) : 1583 - 1590
  • [33] THE EFFECTS OF VENLAFAXINE ON FUNCTIONAL RECOVERY AFTER SPINAL CORD INJURY
    McCormick, Don
    Floyd, Candace
    JOURNAL OF NEUROTRAUMA, 2012, 29 (10) : A180 - A180
  • [34] Alendronate Enhances Functional Recovery after Spinal Cord Injury
    Choi, Yuna
    Shin, Taekyun
    EXPERIMENTAL NEUROBIOLOGY, 2022, 31 (01) : 54 - 64
  • [35] Enoxaparin promotes functional recovery after spinal cord injury by
    Ito, Sadayuki
    Ozaki, Tomoya
    Morozumi, Masayoshi
    Imagama, Shiro
    Kadomatsu, Kenji
    Sakamoto, Kazuma
    EXPERIMENTAL NEUROLOGY, 2021, 340
  • [36] Non-invasive brain and spinal cord stimulation for motor and functional recovery after a spinal cord injury
    Kumru, Hatice
    Flores, Africa
    Rodriguez-Canon, Maria
    Soriano, Ignasi
    Garcia, Loreto
    Vidal-Samso, Joan
    REVISTA DE NEUROLOGIA, 2020, 70 (12) : 461 - 477
  • [37] Optogenetic Neuronal Stimulation Promotes Functional Recovery After Spinal Cord Injury
    Deng, Wei-wei
    Wu, Guang-yan
    Min, Ling-xia
    Feng, Zhou
    Chen, Hui
    Tan, Ming-liang
    Sui, Jian-feng
    Liu, Hong-liang
    Hou, Jing-ming
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [38] Acute baclofen administration promotes functional recovery after spinal cord injury
    Pinho, Andreia G.
    Monteiro, Susana
    Liberato, Valentina
    Santos, Diogo J.
    Campos, Jonas
    Cibra, Jorge R.
    Silva, Nuno A.
    de Sousa, Nidia
    Barreiro-Iglesias, Anton
    Salgado, Antonio J.
    SPINE JOURNAL, 2023, 23 (03) : 379 - 391
  • [39] Blocking Autophagy in Oligodendrocytes Limits Functional Recovery after Spinal Cord Injury
    Ohri, Sujata Saraswat
    Bankston, Andrew N.
    Mullins, S. Ashley
    Liu, Yu
    Andres, Kariena R.
    Beare, Jason E.
    Howard, Russell M.
    Burke, Darlene A.
    Riegler, Amberly S.
    Smith, Allison E.
    Hetman, Michal
    Whittemore, Scott R.
    JOURNAL OF NEUROSCIENCE, 2018, 38 (26) : 5900 - 5912
  • [40] Metformin promotes Schwann cell remyelination, preserves neural tissue and improves functional recovery after spinal cord injury
    Huang, Zucheng
    Lin, Junyu
    Jiang, Hui
    Lin, Wanrong
    Huang, Zhiping
    Chen, Jiayu
    Xiao, Wende
    Lin, Qiong
    Wang, Jun
    Wen, Shifeng
    Zhu, Qingan
    Liu, Junhao
    NEUROPEPTIDES, 2023, 100