ON YOUNG'S INEQUALITY AND ITS REVERSE FOR BOUNDING THE LORENZ CURVE AND GINI MEAN

被引:0
作者
Cerone, Pietro [1 ]
机构
[1] Victoria Univ, Sch Engin & Sci, Melbourne, Vic 8001, Australia
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2009年 / 3卷 / 03期
关键词
Gini mean difference; Gini index; Lorenz curve; variance; coefficient of variation; Young's integral inequality; reverse Young's inequality; DIFFERENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The performance of the Young integral inequality is investigated for bounding the Lorenz curve and the Gini index. The study relies on a comparison of reverse Young type integral inequalities. The resulting approximation and bounds for the Lorenz curve and the Gini index are compared with previous results.
引用
收藏
页码:369 / 381
页数:13
相关论文
共 21 条
  • [1] [Anonymous], 1977, DISTRIBUTION THEORY
  • [2] [Anonymous], 1912, STUDI EC GICENITRICI
  • [3] [Anonymous], 1984, METRON
  • [4] [Anonymous], 2008, ADV MATH INEQUAL SER
  • [5] [Anonymous], CLASSICAL NEW INEQUA
  • [6] BULLEN P. S., 1971, U BEOGRAD PUBL EL MF, p[357, 51]
  • [7] Bounds for the Gini mean difference of continuous distributions defined on finite intervals (I)
    Cerone, P.
    Dragomir, S. S.
    [J]. APPLIED MATHEMATICS LETTERS, 2007, 20 (07) : 782 - 789
  • [8] Bounds for the Gini mean difference of continuous distributions defined on finite intervals(II)
    Cerone, P.
    Dragomir, S. S.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (10-11) : 1555 - 1562
  • [9] Bounds for the gini mean difference via the sonin identity
    Cerone, P
    Dragomir, SS
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (3-4) : 599 - 609
  • [10] Bounds for the Gini mean difference via the Korkine identity
    Cerone P.
    Dragomir S.S.
    [J]. J. Appl. Math. Comp., 2006, 3 (305-315): : 305 - 315