On the Inverse Of General Cyclic Heptadiagonal Matrices

被引:0
作者
Karawia, A. A. [1 ,2 ]
机构
[1] Qassim Univ, Comp Sci Unit, Deanship Educ Serv, Buraydah 51452, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
Cyclic heptadiagonal matrices; Anti-cyclic heptadiagonal matrices; LU factorization; Determinants; Inverse matrix; Linear systems; Computer Algebra System(CAS); DIAGONAL LINEAR-SYSTEMS; COMPUTATIONAL ALGORITHM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the current work, the author present a symbolic algorithm for finding the determinant of any general nonsingular cyclic heptadiagonal matrices and the inverse of anti-cyclic heptadiagonal matrices. The algorithms are mainly based on the work presented in [A. A. KARAWIA, A New algorithm for inverting general cyclic heptadiagonal matrices recursively, arXiv:1011.2306v1 [cs.SC]]. The symbolic algorithms are suited for implementation using Computer Algebra Systems (CAS) such as MATLAB, MAPLE and MATHEMATICA. An illustrative example is given.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 50 条
[21]   Estimates for elements of inverse matrices for a class of operators with matrices of special structure [J].
Azarnova, TV .
MATHEMATICAL NOTES, 2002, 72 (1-2) :3-9
[22]   Fast Algorithm for the Inverse Matrices of Periodic Adding Element Tridiagonal Matrices [J].
Fan, Hongling .
MICRO NANO DEVICES, STRUCTURE AND COMPUTING SYSTEMS, 2011, 159 :464-+
[23]   Infinity norm bounds for the inverse of Nekrasov matrices using scaling matrices [J].
Orera, H. ;
Pena, J. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 358 :119-127
[24]   Computational algorithms for computing the inverse of a square matrix, quasi-inverse of a non-square matrix and block matrices [J].
Najafi, H. Saberl ;
Solary, M. Shams .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (01) :539-550
[25]   Max norm estimation for the inverse of block matrices [J].
Cvetkovic, Ljiljana ;
Doroslovacki, Ksenija .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 :694-706
[26]   An efficient method for computing the inverse of arrowhead matrices [J].
Najafi, H. Saberi ;
Edalatpanah, S. A. ;
Gravvanis, G. A. .
APPLIED MATHEMATICS LETTERS, 2014, 33 :1-5
[27]   On a homogeneous recurrence relation for the determinants of general pentadiagonal Toeplitz matrices [J].
Jia, Jiteng ;
Yang, Boting ;
Li, Sumei .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (04) :1036-1044
[28]   On the inverse of a general pentadiagonal matrix [J].
Zhao, Xi-Le ;
Huang, Ting-Zhu .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) :639-646
[29]   An efficient numerical algorithm for solving linear systems with cyclic tridiagonal coefficient matrices [J].
Jia, Ji-Teng ;
Wang, Fu-Rong ;
Xie, Rong ;
Wang, Yi-Fan .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2024, 62 (08) :1808-1821
[30]   Fast Algorithm for the Inverse Matrices of Adding Element Tridiagonal Periodic Matrices in Signal Processing [J].
Zhao, Yanlei ;
Liu, Xueting .
NANOTECHNOLOGY AND COMPUTER ENGINEERING, 2010, 121-122 :682-686