IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES AND FINITE ELEMENTS WITH SYMMETRIC STABILIZATION FOR ADVECTION-DIFFUSION EQUATIONS

被引:12
作者
Burman, Erik [1 ]
Ern, Alexandre [2 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9QH, E Sussex, England
[2] Univ Paris Est, CERMICS, Ecole Ponts, F-77455 Marne La Vallee 2, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2012年 / 46卷 / 04期
关键词
Stabilized finite elements; stability; error bounds; implicit-explicit Runge-Kutta schemes; unsteady convection-diffusion; PARTIAL-DIFFERENTIAL-EQUATIONS; DISCONTINUOUS GALERKIN METHODS; FRIEDRICHS SYSTEMS; INTERIOR PENALTY; APPROXIMATIONS; STABILITY; FLOWS;
D O I
10.1051/m2an/2011047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a two-stage implicit-explicit Runge-Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on L-2-energy estimates on discrete functions in physical space. Our main results are stability and quasi-optimal error estimates for smooth solutions under a standard hyperbolic CFL restriction on the time step, both in the advection-dominated and in the diffusion-dominated regimes. The theory is illustrated by numerical examples.
引用
收藏
页码:681 / 707
页数:27
相关论文
共 28 条
[21]   Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems [J].
Center for Applied Mathematics, Cornell University, 657 Rhodes Hall, Ithaca, NY 14853 .
J. Numer. Math., 2006, 1 (41-56) :41-56
[22]  
Hecht F., FREEFEM VERSION 3 14
[23]  
JOHNSON C, 1986, MATH COMPUT, V46, P1, DOI 10.1090/S0025-5718-1986-0815828-4
[24]   FINITE-ELEMENT METHODS FOR LINEAR HYPERBOLIC PROBLEMS [J].
JOHNSON, C ;
NAVERT, U ;
PITKARANTA, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 45 (1-3) :285-312
[25]  
Lasaint P., 1974, Mathematical aspects of finite elements in partial differential equations, P89
[26]   From semidiscrete to fully discrete: Stability of Runge-Kutta schemes by the energy method [J].
Levy, D ;
Tadmor, E .
SIAM REVIEW, 1998, 40 (01) :40-73
[27]   Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation [J].
Pareschi, L ;
Russo, G .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 25 (01) :129-155
[28]  
Roos H.-G., 2008, SPRINGER SERIES COMP, V24