IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES AND FINITE ELEMENTS WITH SYMMETRIC STABILIZATION FOR ADVECTION-DIFFUSION EQUATIONS

被引:12
作者
Burman, Erik [1 ]
Ern, Alexandre [2 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9QH, E Sussex, England
[2] Univ Paris Est, CERMICS, Ecole Ponts, F-77455 Marne La Vallee 2, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2012年 / 46卷 / 04期
关键词
Stabilized finite elements; stability; error bounds; implicit-explicit Runge-Kutta schemes; unsteady convection-diffusion; PARTIAL-DIFFERENTIAL-EQUATIONS; DISCONTINUOUS GALERKIN METHODS; FRIEDRICHS SYSTEMS; INTERIOR PENALTY; APPROXIMATIONS; STABILITY; FLOWS;
D O I
10.1051/m2an/2011047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a two-stage implicit-explicit Runge-Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on L-2-energy estimates on discrete functions in physical space. Our main results are stability and quasi-optimal error estimates for smooth solutions under a standard hyperbolic CFL restriction on the time step, both in the advection-dominated and in the diffusion-dominated regimes. The theory is illustrated by numerical examples.
引用
收藏
页码:681 / 707
页数:27
相关论文
共 28 条
[1]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[2]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[3]   Stabilized finite element methods for the generalized Oseen problem [J].
Braack, M. ;
Burman, E. ;
John, V. ;
Lube, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (4-6) :853-866
[4]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259
[5]   A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty [J].
Burman, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2012-2033
[6]   Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems [J].
Burman, E ;
Hansbo, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (15-16) :1437-1453
[7]  
Burman E., 2010, ANAL SPACE SEMIDISCR
[8]   A continuous finite element method with face penalty to approximate Friedrichs' systems [J].
Burman, Erik ;
Ern, Alexandre .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (01) :55-76
[9]   EXPLICIT RUNGE-KUTTA SCHEMES AND FINITE ELEMENTS WITH SYMMETRIC STABILIZATION FOR FIRST-ORDER LINEAR PDE SYSTEMS [J].
Burman, Erik ;
Ern, Alexandre ;
Fernandez, Miguel A. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (06) :2019-2042
[10]   Consistent SUPG-method for transient transport problems: Stability and convergence [J].
Burman, Erik .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (17-20) :1114-1123