Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction

被引:27
作者
You, Bo [1 ,2 ]
Yin, Peiqun [3 ]
Zhang, Junli [1 ,2 ]
He, Daping
Chen, Gaoli [1 ,2 ]
Kang, Fei [1 ,2 ]
Wang, Huiqiao [1 ,2 ]
Deng, Zhaoxiang [1 ,2 ,3 ]
Li, Yadong [3 ,4 ]
机构
[1] Univ Sci & Technol China, Dept Chem, CAS Key Lab Soft Matter Chem, Hefei, Anhui 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Chem, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei, Anhui 230026, Peoples R China
[3] Univ Sci & Technol China, CAN, Hefei 230026, Anhui, Peoples R China
[4] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
HIGH-PERFORMANCE ELECTROCATALYSTS; DOPED CARBON NANOTUBES; IN-SITU; IONIC LIQUIDS; COBALT OXIDE; GRAPHENE; CATALYSTS; IRON; NANOPARTICLES; CHALLENGES;
D O I
10.1038/srep11739
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of highly active, cheap and robust oxygen reduction reaction (ORR) electrocatalysts to replace precious metal platinum is extremely urgent and challenging for renewable energy devices. Herein we report a novel, green and especially facile hydrogel strategy to construct N and B co-doped nanocarbon embedded with Co-based nanoparticles as an efficient non-precious ORR catalyst. The agarose hydrogel provides a general host matrix to achieve a homogeneous distribution of key precursory components including cobalt (II) acetate and buffer salts, which, upon freeze-drying and carbonization, produces the highly active ORR catalyst. The gel buffer containing Tris base, boric acid and ethylenediaminetetraacetic acid, commonly adopted for pH and ionic strength control, plays distinctively different roles here. These include a green precursor for N- and B-doping, a salt porogen and a Co2+ chelating agent, all contributing to the excellent ORR activity. This hydrogel-based process is potentially generalizable for many other catalytic materials.
引用
收藏
页数:9
相关论文
共 42 条
[1]   A class of non-precious metal composite catalysts for fuel cells [J].
Bashyam, Rajesh ;
Zelenay, Piotr .
NATURE, 2006, 443 (7107) :63-66
[2]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[3]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[4]   Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction [J].
Chung, Hoon T. ;
Won, Jong H. ;
Zelenay, Piotr .
NATURE COMMUNICATIONS, 2013, 4
[5]   Structural and molecular interrogation of intact biological systems [J].
Chung, Kwanghun ;
Wallace, Jenelle ;
Kim, Sung-Yon ;
Kalyanasundaram, Sandhiya ;
Andalman, Aaron S. ;
Davidson, Thomas J. ;
Mirzabekov, Julie J. ;
Zalocusky, Kelly A. ;
Mattis, Joanna ;
Denisin, Aleksandra K. ;
Pak, Sally ;
Bernstein, Hannah ;
Ramakrishnan, Charu ;
Grosenick, Logan ;
Gradinaru, Viviana ;
Deisseroth, Karl .
NATURE, 2013, 497 (7449) :332-+
[6]  
Cui CH, 2013, NAT MATER, V12, P765, DOI [10.1038/NMAT3668, 10.1038/nmat3668]
[7]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[8]   "Salt Templating": A Simple and Sustainable Pathway toward Highly Porous Functional Carbons from Ionic Liquids [J].
Fechler, Nina ;
Fellinger, Tim-Patrick ;
Antonietti, Markus .
ADVANCED MATERIALS, 2013, 25 (01) :75-79
[9]   25th Anniversary Article: "Cooking Carbon with Salt": Carbon Materials and Carbonaceous Frameworks from Ionic Liquids and Poly(ionic liquid)s [J].
Fellinger, Tim-Patrick ;
Thomas, Arne ;
Yuan, Jiayin ;
Antonietti, Markus .
ADVANCED MATERIALS, 2013, 25 (41) :5838-5854
[10]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764