On bias-robust mean squared error estimation for pseudo-linear small area estimators

被引:0
作者
Chambers, Ray [1 ]
Chandra, Hukum [2 ]
Tzavidis, Nikos [3 ]
机构
[1] Univ Wollongong, Ctr Stat & Survey Methodol, Wollongong, NSW 2522, Australia
[2] Indian Agr Res Inst, New Delhi 110012, India
[3] Univ Southampton, Social Stat & Southampton Stat Sci Res Inst, Southampton SO17 1BJ, Hants, England
关键词
Best linear unbiased prediction; M-quantile model; Model-based direct estimation; Random effects model; Small area estimation;
D O I
暂无
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
We propose a method of mean squared error (MSE) estimation for estimators of finite population domain means that can be expressed in pseudo-linear form, i.e., as weighted sums of sample values. In particular, it can be used for estimating the MSE of the empirical best linear unbiased predictor, the model-based direct estimator and the M-quantile predictor. The proposed method represents an extension of the ideas in Royall and Cumberland (1978) and leads to MSE estimators that are simpler to implement, and potentially more bias-robust, than those suggested in the small area literature. However, it should be noted that the MSE estimators defined using this method can also exhibit large variability when the area-specific sample sizes are very small. We illustrate the performance of the method through extensive model-based and design-based simulation, with the latter based on two realistic survey data sets containing small area information.
引用
收藏
页码:153 / 170
页数:18
相关论文
共 17 条
[1]   M-quantile models for small area estimation [J].
Chambers, Ray ;
Tzavidis, Nikos .
BIOMETRIKA, 2006, 93 (02) :255-268
[2]  
CHAMBERS RL, 1986, BIOMETRIKA, V73, P597
[3]  
Chandra H., 2011, J STAT COMP IN PRESS
[4]  
Chandra H, 2009, J OFF STAT, V25, P379
[5]   ESTIMATION OF VARIANCE AND COVARIANCE COMPONENTS [J].
HENDERSON, CR .
BIOMETRICS, 1953, 9 (02) :226-252
[6]  
Longford NT, 2007, SURV METHODOL, V33, P69
[7]   Non-parametric small area estimation using penalized spline regression [J].
Opsomer, J. D. ;
Claeskens, G. ;
Ranalli, M. G. ;
Kauermann, G. ;
Breidt, F. J. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :265-286
[8]   THE ESTIMATION OF THE MEAN SQUARED ERROR OF SMALL-AREA ESTIMATORS [J].
PRASAD, NGN ;
RAO, JNK .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (409) :163-171
[9]  
Rao J. N. K., 2003, SMALL AREA ESTIMATIO, DOI DOI 10.1002/0471722189
[10]   LINEAR LEAST-SQUARES PREDICTION APPROACH TO 2-STAGE SAMPLING [J].
ROYALL, RM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1976, 71 (355) :657-664