Rortex based velocity gradient tensor decomposition

被引:51
作者
Gao, Yisheng [1 ]
Liu, Chaoqun [1 ]
机构
[1] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
关键词
IDENTIFICATION; VORTEX; VORTICES;
D O I
10.1063/1.5084739
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Recently, a vector named Rortex was proposed to represent the local fluid rotation [C. Liu et al., "Rortex-A new vortex vector definition and vorticity tensor and vector decompositions," Phys. Fluids 30, 035103 (2018)]. In this paper, a universal Rortex based velocity gradient tensor decomposition is proposed and the relevant local velocity increment decomposition is provided. Vortex structures in boundary layer transition on a flat plate are analyzed to quantify the local rotational, compression-stretching, and shearing effects. The results demonstrate that vorticity is shearing-dominant, while the rotational part or Rortex in general occupies a small part of vorticity in most areas of this case. In other words, vorticity is a quality representing shearing rather than rotation or vortex in most regions of this case.
引用
收藏
页数:8
相关论文
共 24 条
[11]   ON THE IDENTIFICATION OF A VORTEX [J].
JEONG, J ;
HUSSAIN, F .
JOURNAL OF FLUID MECHANICS, 1995, 285 :69-94
[12]   New omega vortex identification method [J].
Liu, ChaoQun ;
Wang, YiQian ;
Yang, Yong ;
Duan, ZhiWei .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2016, 59 (08)
[13]   Physics of turbulence generation and sustenance in a boundary layer [J].
Liu, Chaoqun ;
Yan, Yonghua ;
Lu, Ping .
COMPUTERS & FLUIDS, 2014, 102 :353-384
[14]  
LIU CQ, 2018, PHYS FLUIDS, V30, DOI DOI 10.1063/1.5023001
[15]   A method for characterizing cross-sections of vortices in turbulent flows [J].
Maciel, Yvan ;
Robitaille, Martin ;
Rahgozar, Saeed .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2012, 37 :177-188
[16]  
Robinson S.K., 1990, STRUCTURE TURBULENCE, DOI DOI 10.1007/978-3-642-50971-1_2
[17]   Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows [J].
Silvis, Maurits H. ;
Remmerswaal, Ronald A. ;
Verstappen, Roel .
PHYSICS OF FLUIDS, 2017, 29 (01)
[18]   On the topology of wall turbulence in physical space [J].
Tardu, Sedat .
PHYSICS OF FLUIDS, 2017, 29 (02)
[19]   Definitions of vortex vector and vortex [J].
Tian, Shuling ;
Gao, Yisheng ;
Dong, Xiangrui ;
Liu, Chaoqun .
JOURNAL OF FLUID MECHANICS, 2018, 849 :312-339
[20]   Measurement of the Velocity Gradient Tensor in Turbulent Flows [J].
Wallace, James M. ;
Vukoslavcevic, Petar V. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :157-181