Structure and Dissipation Characteristics of an Electron Diffusion Region Observed by MMS During a Rapid, Normal-Incidence Magnetopause Crossing

被引:25
作者
Torbert, R. B. [1 ,2 ]
Burch, J. L. [2 ]
Argall, M. R. [1 ]
Alm, L. [1 ]
Farrugia, C. J. [1 ]
Forbes, T. G. [1 ]
Giles, B. L. [3 ]
Rager, A. [3 ,4 ]
Dorelli, J. [3 ]
Strangeway, R. J. [5 ]
Ergun, R. E. [6 ]
Wilder, F. D. [6 ]
Ahmadi, N. [6 ]
Lindqvist, P. -A. [7 ]
Khotyaintsev, Y. [8 ]
机构
[1] Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA
[2] Southwest Res Inst, San Antonio, TX 78238 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[4] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA
[5] Univ Calif Los Angeles, Earth Planetary & Space Sci, Los Angeles, CA USA
[6] Univ Colorado, Lab Astrophys & Space Phys, Boulder, CO 80309 USA
[7] Royal Inst Technol, Stockholm, Sweden
[8] Swedish Inst Space Phys, Uppsala, Sweden
关键词
MAGNETIC RECONNECTION; FIELD;
D O I
10.1002/2017JA024579
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
On 22 October 2016, the Magnetospheric Multiscale (MMS) spacecraft encountered the electron diffusion region (EDR) when the magnetosheath field was southward, and there were signatures of fast reconnection, including flow jets, Hall fields, and large power dissipation. One rapid, normal-incidence crossing, during which the EDR structure was almost stationary in the boundary frame, provided an opportunity to observe the spatial structure for the zero guide field case of magnetic reconnection. The reconnection electric field was determined unambiguously to be 2-3 mV/m. There were clear signals of fluctuating parallel electric fields, up to 6 mV/m on the magnetosphere side of the diffusion region, associated with a Hall-like parallel current feature on the electron scale. The width of the main EDR structure was determined to be similar to 2 km (1.8 de). Although the MMS spacecraft were in their closest tetrahedral separation of similar to 8 km, the divergences and curls for these thin current structures could therefore not be computed in the usual manner. A method is developed to determine these quantities on a much smaller scale and applied to compute the normal component of terms in the generalized Ohm's law for the positions of each individual spacecraft (not a barocentric average). Although the gradient pressure term has a qualitative dependence that follows the observed variation of E + Ve x B, the quantitative magnitude of these terms differs by more than a factor of 2, which is shown to be greater than the respective errors. Thus, future research is required to find the manner in which Ohm's law is balanced. Plain Language Summary The Magnetospheric Multiscale (MMS) spacecraft observed the spatial structure of the region where magnetic energy is converted to particle flows and heat. New features of currents and fields parallel to the magnetic field are analyzed. Some discrepancies with present computer simulations are found within this region.
引用
收藏
页码:11901 / 11916
页数:16
相关论文
共 25 条
[1]   Magnetospheric Multiscale Overview and Science Objectives [J].
Burch, J. L. ;
Moore, T. E. ;
Torbert, R. B. ;
Giles, B. L. .
SPACE SCIENCE REVIEWS, 2016, 199 (1-4) :5-21
[2]   Magnetic reconnection at the dayside magnetopause: Advances with MMS [J].
Burch, J. L. ;
Phan, T. D. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (16) :8327-8338
[3]   Electron-scale measurements of magnetic reconnection in space [J].
Burch, J. L. ;
Torbert, R. B. ;
Phan, T. D. ;
Chen, L. -J. ;
Moore, T. E. ;
Ergun, R. E. ;
Eastwood, J. P. ;
Gershman, D. J. ;
Cassak, P. A. ;
Argall, M. R. ;
Wang, S. ;
Hesse, M. ;
Pollock, C. J. ;
Giles, B. L. ;
Nakamura, R. ;
Mauk, B. H. ;
Fuselier, S. A. ;
Russell, C. T. ;
Strangeway, R. J. ;
Drake, J. F. ;
Shay, M. A. ;
Khotyaintsev, Yu. V. ;
Lindqvist, P. -A. ;
Marklund, G. ;
Wilder, F. D. ;
Young, D. T. ;
Torkar, K. ;
Goldstein, J. ;
Dorelli, J. C. ;
Avanov, L. A. ;
Oka, M. ;
Baker, D. N. ;
Jaynes, A. N. ;
Goodrich, K. A. ;
Cohen, I. J. ;
Turner, D. L. ;
Fennell, J. F. ;
Blake, J. B. ;
Clemmons, J. ;
Goldman, M. ;
Newman, D. ;
Petrinec, S. M. ;
Trattner, K. J. ;
Lavraud, B. ;
Reiff, P. H. ;
Baumjohann, W. ;
Magnes, W. ;
Steller, M. ;
Lewis, W. ;
Saito, Y. .
SCIENCE, 2016, 352 (6290)
[4]   Scaling of asymmetric Hall magnetic reconnection [J].
Cassak, P. A. ;
Shay, M. A. .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (19)
[5]   How anomalous resistivity accelerates magnetic reconnection [J].
Che, H. .
PHYSICS OF PLASMAS, 2017, 24 (08)
[6]   Computing the reconnection rate in turbulent kinetic layers by using electron mixing to identify topology [J].
Daughton, W. ;
Nakamura, T. K. M. ;
Karimabadi, H. ;
Roytershteyn, V. ;
Loring, B. .
PHYSICS OF PLASMAS, 2014, 21 (05)
[7]  
Daughton W, 2011, NAT PHYS, V7, P539, DOI [10.1038/NPHYS1965, 10.1038/nphys1965]
[8]  
Drake J.F., 2007, RECONNECTION MAGNETI, P87
[9]  
Dunlop M., 1988, Adv. Space Res., V8, P273, DOI DOI 10.1016/0273-1177(88)90141-X
[10]   On the relation between reconnected magnetic flux and parallel electric fields in the solar corona [J].
Hesse, M ;
Forbes, TG ;
Birn, J .
ASTROPHYSICAL JOURNAL, 2005, 631 (02) :1227-1238