Bayesian inference for multivariate ordinal data using parameter expansion

被引:30
作者
Lawrence, Earl [1 ]
Bingham, Derek [2 ]
Liu, Chuanhai [3 ]
Nair, Vijayan N. [4 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC V5A 1S6, Canada
[3] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
[4] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Gibbs sampling; multivariate; ordinal data; parameter expansion; probit;
D O I
10.1198/004017008000000064
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multivariate ordinal data arise in many applications. This article proposes a new, efficient method for Bayesian inference for multivariate probit models using Markov chain Monte Carlo techniques. The key idea is the novel use of parameter expansion to sample correlation matrices. A nice feature of the approach is that inference is performed using straightforward Gibbs sampling. Bayesian methods for model selection are also discussed. Our approach is motivated by a study of how women make decisions on taking medication to reduce the risk of breast cancer. Furthermore, we compare and contrast the performance of our approach with other methods.
引用
收藏
页码:182 / 191
页数:10
相关论文
共 26 条
[1]  
Agresti A., 1984, Analysis of Ordinal Categorical Data
[2]   BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) :669-679
[3]   Sequential ordinal modeling with applications to survival data [J].
Albert, JH ;
Chib, S .
BIOMETRICS, 2001, 57 (03) :829-836
[4]   MULTI-VARIATE PROBIT ANALYSIS [J].
ASHFORD, JR ;
SOWDEN, RR .
BIOMETRICS, 1970, 26 (03) :535-&
[5]   High-dimensional multivariate probit analysis [J].
Bock, RD ;
Gibbons, RD .
BIOMETRICS, 1996, 52 (04) :1183-1194
[6]   Analysis of multivariate probit models [J].
Chib, S ;
Greenberg, E .
BIOMETRIKA, 1998, 85 (02) :347-361
[7]   Bayesian analysis of ordered categorical data from industrial experiments [J].
Chipman, H ;
Hamada, M .
TECHNOMETRICS, 1996, 38 (01) :1-10
[8]  
Chipman HA, 1998, STAT IND TECHNOL, P207
[9]   Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models [J].
Cowles, MK .
STATISTICS AND COMPUTING, 1996, 6 (02) :101-111
[10]   Multivariate analysis of multiple response data [J].
Edwards, YD ;
Allenby, GM .
JOURNAL OF MARKETING RESEARCH, 2003, 40 (03) :321-334