SRANet: semantic relation aware network for semantic segmentation of remote sensing images

被引:6
作者
Gao, Liang [1 ,2 ,3 ]
Qian, Yurong [1 ,2 ,3 ]
Liu, Hui [2 ,3 ,4 ]
Zhong, Xiwu [1 ,2 ,3 ]
Xiao, Zhengqing [5 ]
机构
[1] Xinjiang Univ, Coll Software, Urumqi, Peoples R China
[2] Xinjiang Univ, Key Lab Signal Detect & Proc, Urumqi, Peoples R China
[3] Xinjiang Univ, Key Lab Software Engn, Urumqi, Peoples R China
[4] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi, Peoples R China
[5] Xinjiang Univ, Coll Math & Syst Sci, Urumqi, Peoples R China
基金
中国国家自然科学基金;
关键词
self attention; remote sensing image; semantic segmentation; context information;
D O I
10.1117/1.JRS.16.014515
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remote sensing images contain complex feature information, and traditional convolutional networks cannot effectively model the contextual relationships. To address this problem, we propose a semantic segmentation network for remote sensing images based on semantic relationship aware. We construct the semantic relationship aware module to obtain the global semantic information of remote sensing images by self-attention. In addition, the separable space convergence pyramid module was constructed to effectively utilize the feature information in the high-level feature maps. By separable convolution with different dilation rates, the network can acquire multiscale semantic information. Our semantic relation aware network (SRANet) improves the overall accuracy by 0.33% over the benchmark network in the Vaihingen dataset and by 0.42% in the Potsdam dataset. The class activation maps show that the SRANet has ideal activation responses for targets at different scales in images. Furthermore, our SRANet can produce competitive segmentation performance compared with other state-of-the-art segmentation networks. (C) 2022 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:17
相关论文
共 47 条
[1]   Segmentation of remotely sensed images using wavelet features and their evaluation in soft computing framework [J].
Acharyya, M ;
De, RK ;
Kundu, MK .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (12) :2900-2905
[2]   A deep learning framework for land-use/land-cover mapping and analysis using multispectral satellite imagery [J].
Alhassan, Victor ;
Henry, Christopher ;
Ramanna, Sheela ;
Storie, Christopher .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (12) :8529-8544
[3]  
[Anonymous], 2015, 1511 ARXIV
[4]  
Atwood J, 2016, ADV NEUR IN, V29
[5]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[6]  
Bai H., 2022, IEEE GEOSCI REMOTE S, V19, P1, DOI [DOI 10.1109/LGRS.2021.3063799, https://doi.org/10.1109/LGRS.2021.3063799]
[7]   Lightweight multiscale framework for segmentation of high-resolution remote sensing imagery [J].
Bello, Inuwa M. ;
Zhang, Ke ;
Wang, Jingyu ;
Li, Haoyu .
JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (03)
[8]  
Byeon W, 2015, PROC CVPR IEEE, P3547, DOI 10.1109/CVPR.2015.7298977
[9]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[10]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848