Multi-objective Bayesian optimization of ferroelectric materials with interfacial control for memory and energy storage applications

被引:25
作者
Biswas, Arpan [1 ]
Morozovska, Anna N. [2 ]
Ziatdinov, Maxim [1 ,4 ]
Eliseev, Eugene A. [3 ]
Kalinin, Sergei, V [1 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2009, Oak Ridge, TN 37831 USA
[2] Natl Acad Sci Ukraine, Inst Phys, Pr Nauky 46, UA-03028 Kiev, Ukraine
[3] Natl Acad Sci Ukraine, Inst Problems Mat Sci, Krjijanovskogo 3, UA-03142 Kiev, Ukraine
[4] Oak Ridge Natl Lab, Computat Sci & Engn Div, POB 2009, Oak Ridge, TN 37831 USA
基金
新加坡国家研究基金会;
关键词
PHASE-TRANSITIONS; PHYSICS; STATES; CONDUCTIVITY; ALLOYS; FILMS;
D O I
10.1063/5.0068903
中图分类号
O59 [应用物理学];
学科分类号
摘要
Optimization of materials' performance for specific applications often requires balancing multiple aspects of materials' functionality. Even for the cases where a generative physical model of material behavior is known and reliable, this often requires search over multidimensional function space to identify low-dimensional manifold corresponding to the required Pareto front. Here, we introduce the multi-objective Bayesian optimization (MOBO) workflow for the ferroelectric/antiferroelectric performance optimization for memory and energy storage applications based on the numerical solution of the Ginzburg-Landau equation with electrochemical or semiconducting boundary conditions. MOBO is a low computational cost optimization tool for expensive multi-objective functions, where we update posterior surrogate Gaussian process models from prior evaluations and then select future evaluations from maximizing an acquisition function. Using the parameters for a prototype bulk antiferroelectric (PbZrO3), we first develop a physics-driven decision tree of target functions from the loop structures. We further develop a physics-driven MOBO architecture to explore multidimensional parameter space and build Pareto-frontiers by maximizing two target functions jointly-energy storage and loss. This approach allows for rapid initial materials and device parameter selection for a given application and can be further expanded toward the active experiment setting. The associated notebooks provide both the tutorial on MOBO and allow us to reproduce the reported analyses and apply them to other systems (https://github.com/arpanbiswas52/MOBO_AFI_Supplements).
引用
收藏
页数:20
相关论文
共 112 条
[1]  
Abdolshah M., 2019, ARXIV
[2]  
Abdolshah M, 2018, INT C PATT RECOG, P3238, DOI 10.1109/ICPR.2018.8545387
[3]   The effect of the nugget on Gaussian process emulators of computer models [J].
Andrianakis, Ioannis ;
Challenor, Peter G. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) :4215-4228
[4]  
[Anonymous], 2010, arXiv, DOI DOI 10.48550/ARXIV.1012.2599
[5]  
[Anonymous], 2018, arXiv
[6]   The physics of ferroelectric memories [J].
Auciello, O ;
Scott, JF ;
Ramesh, R .
PHYSICS TODAY, 1998, 51 (07) :22-27
[7]   POLARIZATION RESPONSE OF CRYSTALS WITH STRUCTURAL AND FERROELECTRIC INSTABILITIES [J].
BALASHOVA, EV ;
TAGANTSEV, AK .
PHYSICAL REVIEW B, 1993, 48 (14) :9979-9986
[8]   BETAINE ARSENATE AS A SYSTEM WITH 2 INSTABILITIES [J].
BALASHOVA, EV ;
LEMANOV, VV ;
TAGANTSEV, AK ;
SHERMAN, AB ;
SHOMURADOV, SH .
PHYSICAL REVIEW B, 1995, 51 (14) :8747-8752
[9]   Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3 [J].
Balke, Nina ;
Winchester, Benjamin ;
Ren, Wei ;
Chu, Ying Hao ;
Morozovska, Anna N. ;
Eliseev, Eugene A. ;
Huijben, Mark ;
Vasudevan, Rama K. ;
Maksymovych, Petro ;
Britson, Jason ;
Jesse, Stephen ;
Kornev, Igor ;
Ramesh, Ramamoorthy ;
Bellaiche, Laurent ;
Chen, Long Qing ;
Kalinin, Sergei V. .
NATURE PHYSICS, 2012, 8 (01) :81-88
[10]   SURFACE STATES AND RECTIFICATION AT A METAL SEMI-CONDUCTOR CONTACT [J].
BARDEEN, J .
PHYSICAL REVIEW, 1947, 71 (10) :717-727