On the nonlinear Schrodinger equations of derivative type

被引:0
|
作者
Ozawa, T
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the Cauchy problem both at finite and infinite times for a class of nonlinear Schrodinger equations with coupling of derivative type. The proof uses gauge transformations which reduce the original equations to systems of equations without coupling of derivative type. Concerning the Cauchy problem at finite times, we give sufficient conditions for the global well-posedness in the energy space. Concerning the Cauchy problem at infinity, we construct modified wave operators on small and sufficiently regular asymptotic states.
引用
收藏
页码:137 / 163
页数:27
相关论文
共 50 条
  • [31] The coupled nonlinear Schrodinger-type equations
    Abdelrahman, Mahmoud A. E.
    Hassan, S. Z.
    Inc, Mustafa
    MODERN PHYSICS LETTERS B, 2020, 34 (06):
  • [32] On nonparaxial nonlinear Schrodinger-type equations
    Cano, B.
    Duran, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 373 (373)
  • [33] A Nekhoroshev type theorem for the derivative nonlinear Schrodinger equation
    Cong, Hongzi
    Mi, Lufang
    Wang, Peizhen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (09) : 5207 - 5256
  • [34] THE ZAKHAROV-SHABAT EQUATIONS FOR THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION
    HUANG, NM
    LIAO, GJ
    CHINESE SCIENCE BULLETIN, 1991, 36 (22): : 1935 - 1936
  • [35] A super hierarchy of coupled derivative nonlinear Schrodinger equations and conservation laws
    He, Guoliang
    Zhai, Yunyun
    Geng, Xianguo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (07) : 2228 - 2233
  • [36] The Marchenko method to solve the general system of derivative nonlinear Schrodinger equations
    Aktosun, Tuncay
    Ercan, Ramazan
    Unlu, Mehmet
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (07)
  • [37] Global Existence for Two Dimensional Quadratic Derivative Nonlinear Schrodinger Equations
    Hayashi, Nakao
    Naumkin, Pavel I.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (04) : 732 - 752
  • [38] Global Well-Posedness of the Derivative Nonlinear Schrodinger Equations on T
    Win, Yin Yin Su
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2010, 53 (01): : 51 - 88
  • [39] Statistical approach of modulational instability in the class of derivative nonlinear Schrodinger equations
    Grecu, A. T.
    Grecu, D.
    Visinescu, Anca
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (05) : 1190 - 1204
  • [40] Small data well-posedness for derivative nonlinear Schrodinger equations
    Pornnopparath, Donlapark
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (08) : 3792 - 3840