On the nonlinear Schrodinger equations of derivative type

被引:0
|
作者
Ozawa, T
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the Cauchy problem both at finite and infinite times for a class of nonlinear Schrodinger equations with coupling of derivative type. The proof uses gauge transformations which reduce the original equations to systems of equations without coupling of derivative type. Concerning the Cauchy problem at finite times, we give sufficient conditions for the global well-posedness in the energy space. Concerning the Cauchy problem at infinity, we construct modified wave operators on small and sufficiently regular asymptotic states.
引用
收藏
页码:137 / 163
页数:27
相关论文
共 50 条
  • [21] ENERGY TRANSFER MODEL FOR THE DERIVATIVE NONLINEAR SCHRODINGER EQUATIONS ON THE TORUS
    Takaoka, Hideo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (11) : 5819 - 5841
  • [22] Quadratic derivative nonlinear Schrodinger equations in two space dimensions
    Bernal-Vilchis, Fernando
    Hayashi, Nakao
    Naumkin, Pavel I.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (03): : 329 - 355
  • [23] Quadratic nonlinear derivative Schrodinger equations. Part I
    Bejenaru, Ioan
    INTERNATIONAL MATHEMATICS RESEARCH PAPERS, 2006,
  • [24] DERIVATIVE NONLINEAR SCHRODINGER EQUATIONS WITH ZN AND DN-REDUCTIONS
    Gerdjikov, V. S.
    ROMANIAN JOURNAL OF PHYSICS, 2013, 58 (5-6): : 573 - 582
  • [25] Rogue waves for a system of coupled derivative nonlinear Schrodinger equations
    Chan, H. N.
    Malomed, B. A.
    Chow, K. W.
    Ding, E.
    PHYSICAL REVIEW E, 2016, 93 (01)
  • [26] Null Structure in a System of Quadratic Derivative Nonlinear Schrodinger Equations
    Ikeda, Masahiro
    Katayama, Soichiro
    Sunagawa, Hideaki
    ANNALES HENRI POINCARE, 2015, 16 (02): : 535 - 567
  • [27] REGULARITY OF SOLUTIONS TO NONLINEAR EQUATIONS OF SCHRODINGER TYPE
    SJOLIN, P
    TOHOKU MATHEMATICAL JOURNAL, 1993, 45 (02) : 191 - 203
  • [28] Nonlinear singular Schrodinger-type equations
    Lange, H
    Poppenberg, M
    Teismann, H
    NONLINEAR THEORY OF GENERALIZED FUNCTIONS, 1999, 401 : 113 - 128
  • [29] Periodic solutions of nonlinear Schrodinger type equations
    Liu, GT
    Fan, TY
    CHINESE PHYSICS, 2004, 13 (06): : 805 - 810
  • [30] New integrable equations of nonlinear Schrodinger type
    Calogero, F
    Degasperis, A
    STUDIES IN APPLIED MATHEMATICS, 2004, 113 (01) : 91 - 137