A Concise Review on Recent Developments of Machine Learning for the Prediction of Vibrational Spectra

被引:42
作者
Han, Ruocheng [1 ]
Ketkaew, Rangsiman [1 ]
Luber, Sandra [1 ]
机构
[1] Univ Zurich, Dept Chem, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
DENSITY-FUNCTIONAL-THEORY; PHYSICAL FORMULA CONSTRUCTION; CHEMICAL UNIVERSE; INFRARED-SPECTRA; VIRTUAL EXPLORATION; NEURAL-NETWORKS; SMALL MOLECULES; SIMULATION; INTENSITY; CHEMISTRY;
D O I
10.1021/acs.jpca.1c10417
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning has become more and more popular in computational chemistry, as well as in the important field of spectroscopy. In this concise review, we walk the reader through a short summary of machine learning algorithms and a comprehensive discussion on the connection between machine learning methods and vibrational spectroscopy, particularly for the case of infrared and Raman spectroscopy. We also briefly discuss state-of-the-art molecular representations which serve as meaningful inputs for machine learning to predict vibrational spectra. In addition, this review provides an overview of the transferability and best practices of machine learning in the prediction of vibrational spectra as well as possible future research directions.
引用
收藏
页码:801 / 812
页数:12
相关论文
共 106 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
[Anonymous], 1987, P 6 NATL C ARTIFICIA
[3]  
[Anonymous], 2012, JMLR WORKSHOP C P
[4]   Best practices in machine learning for chemistry comment [J].
Artrith, Nongnuch ;
Butler, Keith T. ;
Coudert, Francois-Xavier ;
Han, Seungwu ;
Isayev, Olexandr ;
Jain, Anubhav ;
Walsh, Aron .
NATURE CHEMISTRY, 2021, 13 (06) :505-508
[5]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[6]   Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (07)
[7]  
Bertz M., 2021, ECS M ABSTRACTS, P1311
[8]   970 Million Druglike Small Molecules for Virtual Screening in the Chemical Universe Database GDB-13 [J].
Blum, Lorenz C. ;
Reymond, Jean-Louis .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (25) :8732-+
[9]   Adaptive machine learning framework to accelerate ab initio molecular dynamics [J].
Botu, Venkatesh ;
Ramprasad, Rampi .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1074-1083
[10]   Permutationally invariant potential energy surfaces in high dimensionality [J].
Braams, Bastiaan J. ;
Bowman, Joel M. .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2009, 28 (04) :577-606