Influence of Carbon Nanotube Spatial Distribution on Electromagnetic Properties of Nanotube-Polymer Composites

被引:5
|
作者
Moseenkov, Sergey I. [1 ]
Krasnikov, Dmitry V. [1 ,2 ]
Suslyaev, Valentin I. [3 ]
Korovin, Evgeniy Yu. [3 ]
Dorozhkin, Kiril V. [3 ]
Kuznetsov, Vladimir L. [1 ,2 ,3 ]
机构
[1] Boreskov Inst Catalysis SB RAS, Lavrentieva Ave,5, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Pirogova Str 2, Novosibirsk 630090, Russia
[3] Natl Res Tomsk State Univ, Lenina Ave 36, Tomsk 634050, Russia
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2018年 / 255卷 / 01期
关键词
composites; dielectric properties; multi-walled carbon nanotubes; permittivity; polymers; NANOCOMPOSITES; ACTIVATION;
D O I
10.1002/pssb.201700257
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
This paper is devoted to the influence of the multi-walled carbon nanotube (MWCNT) spatial distribution within a polymer matrix on the electrophysical properties of the composite. We have studied composites with MWCNT concentrations close to the percolation threshold upon variation in (i) the morphology of the reinforcing material using MWCNTs with different aspect ratio and nanotube aggregate size (up to the average size of approximate to 300 mu m) that were isolated from each other by thin polymer layers, and (ii) the type of the polymer matrix. The composites obtained have been characterized using optical and scanning electron microscopy, and DC conductivity measurements. A study of the electromagnetic response in microwave (0.01-18GHz) and terahertz (100-200GHz) ranges was performed. In the region close to and above the percolation threshold, the electrophysical properties of the composites were found to be strongly affected by the spatial distribution of MWCNTs in the composite matrix. The effect of conductive fillers (NTs) size on the EMI reflectance of the composites was different for microwave and terahertz ranges.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] The Electromagnetic Shielding Properties of Biodegradable Carbon Nanotube-Polymer Composites
    Pietrzak, Lukasz
    Stano, Ernest
    Szymanski, Lukasz
    ELECTRONICS, 2024, 13 (11)
  • [2] Tailoring the Electrical Properties of Carbon Nanotube-Polymer Composites
    Huang, Yan Y.
    Terentjev, Eugene M.
    ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (23) : 4062 - 4068
  • [3] Thermal properties and percolation in carbon nanotube-polymer composites
    Bonnet, P.
    Sireude, D.
    Garnier, B.
    Chauvet, O.
    APPLIED PHYSICS LETTERS, 2007, 91 (20)
  • [4] Development and thermal properties of carbon nanotube-polymer composites
    Jackson, Enrique M.
    Laibinis, Paul E.
    Collins, Warren E.
    Ueda, Akira
    Wingard, Charles D.
    Penn, Benjamin
    COMPOSITES PART B-ENGINEERING, 2016, 89 : 362 - 373
  • [5] The Influence of Carbon Nanotube Aspect Ratio on Thermal Conductivity Enhancement in Nanotube-Polymer Composites
    Kapadia, Rahul S.
    Louie, Brian M.
    Bandaru, Prabhakar R.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2014, 136 (01):
  • [6] Properties of carbon nanotube-polymer composites aligned in a magnetic field
    Camponeschi, Erin
    Vance, Richard
    Al-Haik, Marwan
    Garmestani, Hamid
    Tannenbaum, Rina
    CARBON, 2007, 45 (10) : 2037 - 2046
  • [7] Deformation of carbon nanotubes in nanotube-polymer composites
    Bower, C
    Rosen, R
    Jin, L
    Han, J
    Zhou, O
    APPLIED PHYSICS LETTERS, 1999, 74 (22) : 3317 - 3319
  • [8] Circuit elements in carbon nanotube-polymer composites
    Hsu, WK
    Kotzeva, V
    Watts, PCP
    Chen, GZ
    CARBON, 2004, 42 (8-9) : 1707 - 1712
  • [9] Carbon nanotube-polymer composites for photonic devices
    Scardaci, V.
    Rozhin, A. G.
    Hennrich, F.
    Milne, W. I.
    Ferrari, A. C.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 37 (1-2): : 115 - 118
  • [10] Soluble Carbon Nanotubes and Nanotube-Polymer Composites
    Fujigaya, Tsuyohiko
    Nakashima, Naotoshi
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (03) : 1717 - 1738