On existence and concentration of solutions for Hamiltonian systems involving fractional operator with critical exponential growth

被引:1
作者
Costa, Augusto C. R. [1 ]
Maia, Braulio B., V [1 ,2 ]
Miyagaki, Olimpio H. [3 ]
机构
[1] Univ Fed Para UFPA, Inst Ciencias Exatas & Nat, Belem, Para, Brazil
[2] Univ Fed Rural Amazonia UFRA, Campus Capitao Poco,Vila Nova S-N, BR-68650000 Capitao Poco, PA, Brazil
[3] Univ Fed Sao Carlos UFSCar, Dept Matemat, Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
exponential critical growth; fractional Hamiltonian elliptic system; Moser iteration; Nehari generalized; truncation arguments; ELLIPTIC PROBLEMS; INEQUALITY; EQUATIONS;
D O I
10.1002/mana.201900397
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the existence and concentration of ground state solutions for the following class of fractional Schrodinger system (-Delta)(1/2)u+(lambda a(x)+1)u=H-v(u,v)in R, u,v is an element of H-1/2(R), (-Delta)(1/2)v+(lambda a(x)+1)v=H-u(u,v)in R, u,v is an element of H-1/2(R), where H has exponential critical growth, lambda is a positive parameter and a(x) has a potential well with int(a(-1)(0)) consisting of k disjoint components Omega(1), ... Omega(k). The proof relies on variational methods and combines truncation arguments and the Moser iteration technique.
引用
收藏
页码:1480 / 1512
页数:33
相关论文
共 30 条
[1]   A SHARP INEQUALITY OF MOSER,J. FOR HIGHER-ORDER DERIVATIVES [J].
ADAMS, DR .
ANNALS OF MATHEMATICS, 1988, 128 (02) :385-398
[2]   EXISTENCE OF POSITIVE MULTI-BUMP SOLUTIONS FOR A SCHRODINGER-POISSON SYSTEM IN R3 [J].
Alves, Claudianor O. ;
Yang, Minbo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (11) :5881-5910
[3]   On a fractional magnetic Schrodinger equation in R with exponential critical growth [J].
Ambrosio, Vincenzo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 183 :117-148
[4]  
[Anonymous], 2005, Milan J. Math, DOI DOI 10.1007/S00032-005-0047-8
[5]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[6]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[7]   CRITICAL-POINT THEOREMS FOR INDEFINITE FUNCTIONALS [J].
BENCI, V ;
RABINOWITZ, PH .
INVENTIONES MATHEMATICAE, 1979, 52 (03) :241-273
[8]   NONTRIVIAL SOLUTION OF SEMILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT IN R2 [J].
CAO, DM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) :407-435
[9]   POSITIVE SOLUTIONS OF SEMILINEAR ELLIPTIC-SYSTEMS [J].
CLEMENT, P ;
DEFIGUEIREDO, DG ;
MITIDIERI, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (5-6) :923-940
[10]   An Orlicz-space approach to superlinear elliptic systems [J].
de Figueiredo, DG ;
do O, JM ;
Ruf, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 224 (02) :471-496