Convective heat transfer and the pattern of thermal emission on the gas giants

被引:55
作者
Aurnou, Jonathan [1 ]
Heimpel, Moritz [2 ]
Allen, Lorraine [3 ]
King, Eric [1 ]
Wicht, Johannes [4 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[2] Univ Alberta, Dept Phys, Edmonton, AB T6G 1V6, Canada
[3] US Coast Guard Acad, Div Phys, New London, CT 06320 USA
[4] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany
关键词
heat flow; heat generation and transport; planetary interiors;
D O I
10.1111/j.1365-246X.2008.03764.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Jupiter and Saturn emit nearly twice the thermal energy they receive from the Sun. Although insolation decreases toward the poles, the large-scale outward heat flux is nearly uniform, with smaller-scale latitudinal undulations that correlate with the zonal jet streams. Here we present numerical models of rapidly rotating, turbulent 3-D convection in geometrically thin, uniformly forced layers of Boussinesq fluid that approximate the deep convection zones of Jupiter and Saturn. In previous studies we have demonstrated that such models generate zonal flows comparable to those observed on the gas giants. By analysing the simulated patterns of convective heat transfer, we show here that deep convection in the gas giants can explain the anomalously uniform large-scale thermal emissions as well as the jet-scale variations. In particular, we find that convective heat transfer by quasi-geostrophic thermal plumes in relatively thin spherical shell geometry generates an outward heat flow pattern with a broad equatorial minimum and peaks at the poles. The results suggest an alternative to the hypothesis that insolation controls the large-scale patterns of heat flux and zonal flow on the gas giants. Instead, we propose that the large-scale thermal and zonal flow fields originate deep within the planets' molecular envelopes.
引用
收藏
页码:793 / 801
页数:9
相关论文
共 59 条
  • [51] Depth of a strong jovian jet from a planetary-scale disturbance driven by storms
    Sanchez-Lavega, A.
    Orton, G. S.
    Hueso, R.
    Garcia-Melendo, E.
    Perez-Hoyos, S.
    Simon-Miller, A.
    Rojas, J. F.
    Gomez, J. M.
    Yanamandra-Fisher, P.
    Fletcher, L.
    Joels, J.
    Kemerer, J.
    Hora, J.
    Karkoschka, E.
    de Pater, I.
    Wong, M. H.
    Marcus, P. S.
    Pinilla-Alonso, N.
    Carvalho, F.
    Go, C.
    Parker, D.
    Salway, M.
    Valimberti, M.
    Wesley, A.
    Pujic, Z.
    [J]. NATURE, 2008, 451 (7177) : 437 - 440
  • [52] Jupiter's atmospheric temperatures: From Voyager IRIS to Cassini CIRS
    Simon-Miller, AA
    Conrath, BJ
    Gierasch, PJ
    Orton, GS
    Achterberg, RK
    Flasar, FM
    Fisher, BM
    [J]. ICARUS, 2006, 180 (01) : 98 - 112
  • [53] Azimuthal winds, convection and dynamo action in the polar regions of planetary cores
    Sreenivasan, Binod
    Jones, Chris A.
    [J]. GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2006, 100 (4-5) : 319 - 339
  • [54] DYNAMICS OF ATMOSPHERES OF MAJOR PLANETS
    STONE, PH
    [J]. SPACE SCIENCE REVIEWS, 1973, 14 (3-4) : 444 - 459
  • [55] Tritton DJ, 1987, PHYS FLUID DYNAMICS
  • [56] Jovian atmospheric dynamics:: an update after Galileo and Cassini
    Vasavada, AR
    Showman, AP
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2005, 68 (08) : 1935 - 1996
  • [57] Inner-core conductivity in numerical dynamo simulations
    Wicht, J
    [J]. PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2002, 132 (04) : 281 - 302
  • [58] WILLIAMS GP, 1985, ADV GEOPHYS, V28, P381
  • [59] SPIRALING COLUMNAR CONVECTION IN RAPIDLY ROTATING SPHERICAL FLUID SHELLS
    ZHANG, K
    [J]. JOURNAL OF FLUID MECHANICS, 1992, 236 : 535 - 556