Machine learning-assisted design of polarization-controlled dynamically switchable full-color metasurfaces

被引:6
|
作者
Hu, Lechuan [1 ,2 ]
Ma, Lanxin [1 ,2 ]
Wang, Chengchao [1 ,2 ]
Liu, Linhua [1 ,2 ]
机构
[1] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China
[2] Shandong Univ, Opt & Thermal Radiat Res Ctr, Inst Frontier & Interdisciplinary Sci, Qingdao 266237, Peoples R China
来源
OPTICS EXPRESS | 2022年 / 30卷 / 15期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
DEEP NEURAL-NETWORKS; INVERSE DESIGN; SILICON NANOSTRUCTURES; GENERATION; OPTIMIZATION; ARRAY; SRGB;
D O I
10.1364/OE.464704
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Dynamic color tuning has significant application prospects in the fields of color display, steganography, and information encryption. However, most methods for color switching require external stimuli, which increases the structural complexity and hinders the applicability of front-end dynamic display technology. In this study, we propose polarization-controlled hybrid metal-dielectric metasurfaces to realize full-color display and dynamic color tuning by altering the polarization angle of incident light without changing the structure and properties of the material. A bidirectional neural network is trained to predict the colors of mixed metasurfaces and inversely design the geometric parameters for the desired colors, which is less dependent on design experience and reduces the computational cost. According to the color recognition ability of human eyes, the accuracy of color prediction realized in our study is 93.18% and that of inverse parameter design is 92.37%. This study presents a simple method for dynamic structural color tuning and accelerating the design of full-color metasurfaces, which can offer further insight into the design of color filters and promote photonics research. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:26519 / 26533
页数:15
相关论文
共 14 条
  • [1] Polarization-controlled color-tunable holograms with dielectric metasurfaces
    Wang, Bo
    Dong, Fengliang
    Yang, Dong
    Song, Zhiwei
    Xu, Lihua
    Chu, Weiguo
    Gong, Qihuang
    Li, Yan
    OPTICA, 2017, 4 (11): : 1368 - 1371
  • [2] Machine learning-assisted exploration of a versatile polymer platform with charge transfer-dependent full-color emission
    Ye, Suiying
    Meftahi, Nastaran
    Lyskov, Igor
    Tian, Tian
    Whitfield, Richard
    Kumar, Sudhir
    Christofferson, Andrew J.
    Winkler, David A.
    Shih, Chih-Jen
    Russo, Salvy
    Leroux, Jean-Christophe
    Bao, Yinyin
    CHEM, 2023, 9 (04): : 924 - 947
  • [3] Recent progress in the machine learning-assisted rational design of alloys
    Fu, Huadong
    Zhang, Hongtao
    Wang, Changsheng
    Yong, Wei
    Xie, Jianxin
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2022, 29 (04) : 635 - 644
  • [4] Graphene-based phononic crystal lenses: Machine learning-assisted analysis and design
    Guo, Liangteng
    Zhao, Shaoyu
    Yang, Jie
    Kitipornchai, Sritawat
    ULTRASONICS, 2024, 138
  • [5] Machine learning-assisted design and prediction of materials for batteries based on alkali metals
    Si, Kexin
    Sun, Zhipeng
    Song, Huaxin
    Jiang, Xiangfen
    Wang, Xuebin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (11) : 5423 - 5442
  • [6] Machine learning-assisted inverse design of wide-bandgap acoustic topological devices
    Li, Xinxin
    Qin, Yao
    He, Guangchen
    Lian, Feiyu
    Zuo, Shuyu
    Cai, Chengxin
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (13)
  • [7] Laser technologies in manufacturing functional materials and applications of machine learning-assisted design and fabrication
    Zhang, Xiangning
    Zhou, Li
    Feng, Guodong
    Xi, Kai
    Algadi, Hassan
    Dong, Mengyao
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2025, 8 (01)
  • [8] Machine learning-assisted design of porous carbons for removing paracetamol from aqueous solutions
    Kowalczyk, Piotr
    Terzyk, Artur P.
    Erwardt, Paulina
    Hough, Michael
    Deditius, Artur P.
    Gauden, Piotr A.
    Neimark, Alexander, V
    Kaneko, Katsumi
    CARBON, 2022, 198 : 371 - 381
  • [9] Design of Zero Clearance SIW Endfire Antenna Array Using Machine Learning-Assisted Optimization
    Zhang, Jin
    Akinsolu, Mobayode O.
    Liu, Bo
    Zhang, Shuai
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (05) : 3858 - 3863
  • [10] Machine learning-assisted design and control for period-one microwave photonic sensing signal
    Fang, Can
    Ruan, Yuxi
    Guo, Qinghua
    Yu, Yanguang
    OPTICS AND LASER TECHNOLOGY, 2025, 180