An Improved Extreme Learning Machine Model and State-of-Charge Estimation of Single Flow Zinc-Nickle Battery

被引:0
|
作者
Lin, Xiaofeng [1 ]
Guo, Yang [1 ]
Cheng, Jie [1 ]
Guo, Zhenbang [1 ]
Yan, Xinglong [1 ]
机构
[1] Guangxi Univ, Sch Elect Engn, Nanning, Peoples R China
来源
PROCEEDINGS OF 2017 CHINESE INTELLIGENT AUTOMATION CONFERENCE | 2018年 / 458卷
基金
中国国家自然科学基金;
关键词
D O I
10.1007/978-981-10-6445-6_67
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:613 / 622
页数:10
相关论文
共 50 条
  • [1] A Dynamic Model of Single Flow Zinc-Nickle Battery
    Lin, Xiaofeng
    Guo, Yang
    2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 1328 - 1332
  • [2] More intelligent and robust estimation of battery state-of-charge with an improved regularized extreme learning machine
    Jiao, Meng
    Wang, Dongqing
    Yang, Yan
    Liu, Feng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 104 (104)
  • [3] State-of-Charge Estimation of Lithium Iron Phosphate Battery Using Extreme Learning Machine
    Wang, Zhihao
    Yang, Daiming
    2015 6TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS SYSTEMS AND APPLICATIONS (PESA), 2015,
  • [4] Extreme learning machine model for state-of-charge estimation of lithium-ion battery using salp swarm algorithm
    Dou, Jiaming
    Ma, Hongyan
    Zhang, Yingda
    Wang, Shuai
    Ye, Yongxue
    Li, Shengyan
    Hu, Lujin
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [5] Extreme learning machine model with honey badger algorithm based state-of-charge estimation of lithium-ion battery
    Anandhakumar, C.
    Murugan, N. S. Sakthivel
    Kumaresan, K.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [6] Extreme Learning Machine Model for State-of-Charge Estimation of Lithium-Ion Battery Using Gravitational Search Algorithm
    Lipu, Molla S. Hossain
    Hannan, Mahammad A.
    Hussain, Aini
    Saad, Mohamad H.
    Ayob, Afida
    Uddin, Mohammad Nasir
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2019, 55 (04) : 4225 - 4234
  • [7] Study of Battery State-of-charge Estimation with kNN Machine Learning Method
    Talluri T.
    Chung H.T.
    Shin K.
    IEIE Transactions on Smart Processing and Computing, 2021, 10 (06): : 496 - 504
  • [8] Tiny Machine Learning Battery State-of-Charge Estimation Hardware Accelerated
    Pau, Danilo Pietro
    Aniballi, Alberto
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [9] Battery state-of-charge estimation using machine learning analysis of ultrasonic signatures
    Galiounas, Elias
    Tranter, Tom G.
    Owen, Rhodri E.
    Robinson, James B.
    Shearing, Paul R.
    Brett, Dan J. L.
    ENERGY AND AI, 2022, 10
  • [10] A Case Study of a Tiny Machine Learning Application for Battery State-of-Charge Estimation
    Giazitzis, Spyridon
    Sakwa, Maciej
    Leva, Sonia
    Ogliari, Emanuele
    Badha, Susheel
    Rosetti, Filippo
    ELECTRONICS, 2024, 13 (10)