共 50 条
A sine-type Camassa-Holm equation: local well-posedness, Holder continuity, and wave-breaking analysis
被引:1
|作者:
Qin, Guoquan
[1
,2
]
Yan, Zhenya
[2
,3
]
Guo, Boling
[4
]
机构:
[1] Chinese Acad Sci, Acad Math & Syst Sci, Natl Ctr Math & Interdisciplinary Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Math Mechanizat, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[4] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
来源:
MONATSHEFTE FUR MATHEMATIK
|
2022年
/
199卷
/
04期
关键词:
Sine-type Camassa-Holm equation;
Well-posedness;
Holder continuity;
Blow-up criterion and quantity;
Wave breaking;
SHALLOW-WATER EQUATION;
GLOBAL CONSERVATIVE SOLUTIONS;
KORTEWEG-DE-VRIES;
DISSIPATIVE SOLUTIONS;
CAUCHY-PROBLEM;
STABILITY;
EXISTENCE;
PEAKONS;
TRAJECTORIES;
SCATTERING;
D O I:
10.1007/s00605-022-01670-9
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we explore the effect of sine-type higher-order nonlinearity on the dispersive dynamics by considering the Cauchy problem for a sine-type Camassa-Holm (alias sine-CH) equation, which is a higher-order generalization of the remarkable CH equation, and also admits the peakon solution. Some main results are presented containing the local well-posedness for strong solutions in subcritical or critical Besov spaces, Holder continuity of the data-to-solution map, the blow-up criterion and the precise blow-up quantity in Sobolev space, and a sufficient condition with regard to the initial data ensuring the occurance of the wave-breaking phenomenon.
引用
收藏
页码:853 / 890
页数:38
相关论文