A sine-type Camassa-Holm equation: local well-posedness, Holder continuity, and wave-breaking analysis

被引:1
|
作者
Qin, Guoquan [1 ,2 ]
Yan, Zhenya [2 ,3 ]
Guo, Boling [4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Natl Ctr Math & Interdisciplinary Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Math Mechanizat, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[4] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2022年 / 199卷 / 04期
关键词
Sine-type Camassa-Holm equation; Well-posedness; Holder continuity; Blow-up criterion and quantity; Wave breaking; SHALLOW-WATER EQUATION; GLOBAL CONSERVATIVE SOLUTIONS; KORTEWEG-DE-VRIES; DISSIPATIVE SOLUTIONS; CAUCHY-PROBLEM; STABILITY; EXISTENCE; PEAKONS; TRAJECTORIES; SCATTERING;
D O I
10.1007/s00605-022-01670-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we explore the effect of sine-type higher-order nonlinearity on the dispersive dynamics by considering the Cauchy problem for a sine-type Camassa-Holm (alias sine-CH) equation, which is a higher-order generalization of the remarkable CH equation, and also admits the peakon solution. Some main results are presented containing the local well-posedness for strong solutions in subcritical or critical Besov spaces, Holder continuity of the data-to-solution map, the blow-up criterion and the precise blow-up quantity in Sobolev space, and a sufficient condition with regard to the initial data ensuring the occurance of the wave-breaking phenomenon.
引用
收藏
页码:853 / 890
页数:38
相关论文
共 50 条
  • [31] Invariants and wave breaking analysis of a Camassa-Holm type equation with quadratic and cubic non-linearities
    Freire, Igor Leite
    Sales Filho, Nazime
    de Souza, Ligia Correa
    Toffoli, Carlos Eduardo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (08) : 56 - 77
  • [32] Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation in the critical Besov space
    Tu, Xi
    Yin, Zhaoyang
    MONATSHEFTE FUR MATHEMATIK, 2020, 191 (04): : 801 - 829
  • [33] Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation in the critical Besov space
    Tu, Xi
    Yin, Zhaoyang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 128 : 1 - 19
  • [34] WELL-POSEDNESS AND BLOW-UP PHENOMENA FOR A GENERALIZED CAMASSA-HOLM EQUATION
    Li, Jinlu
    Yin, Zhaoyang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (10) : 5493 - 5508
  • [35] On the local well-posedness of a generalized two-component Camassa-Holm system
    Dundar, Nurhan
    Polat, Necat
    ADVANCEMENTS IN MATHEMATICAL SCIENCES (AMS 2015), 2015, 1676
  • [36] Well-posedness for the stochastic higher order modified Camassa-Holm equation
    Chen, Yong
    Shi, Lei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 102 : 242 - 250
  • [37] GLOBAL WELL-POSEDNESS OF THE VISCOUS CAMASSA-HOLM EQUATION WITH GRADIENT NOISE
    Holden, Helge
    Karlsen, Kenneth H.
    Pang, Peter H. C.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, : 568 - 618
  • [38] Wave Breaking of the Camassa-Holm Equation
    Jiang, Zaihong
    Ni, Lidiao
    Zhou, Yong
    JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (02) : 235 - 245
  • [39] Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation with cubic nonlinearity
    Li, Min
    Yin, Zhaoyang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 151 : 208 - 226
  • [40] Blow-up phenomena and the local well-posedness and ill-posedness of the generalized Camassa-Holm equation in critical Besov spaces
    Meng, Zhiying
    Yin, Zhaoyang
    MONATSHEFTE FUR MATHEMATIK, 2023, 200 (04): : 933 - 954