A sine-type Camassa-Holm equation: local well-posedness, Holder continuity, and wave-breaking analysis

被引:1
|
作者
Qin, Guoquan [1 ,2 ]
Yan, Zhenya [2 ,3 ]
Guo, Boling [4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Natl Ctr Math & Interdisciplinary Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Math Mechanizat, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[4] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2022年 / 199卷 / 04期
关键词
Sine-type Camassa-Holm equation; Well-posedness; Holder continuity; Blow-up criterion and quantity; Wave breaking; SHALLOW-WATER EQUATION; GLOBAL CONSERVATIVE SOLUTIONS; KORTEWEG-DE-VRIES; DISSIPATIVE SOLUTIONS; CAUCHY-PROBLEM; STABILITY; EXISTENCE; PEAKONS; TRAJECTORIES; SCATTERING;
D O I
10.1007/s00605-022-01670-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we explore the effect of sine-type higher-order nonlinearity on the dispersive dynamics by considering the Cauchy problem for a sine-type Camassa-Holm (alias sine-CH) equation, which is a higher-order generalization of the remarkable CH equation, and also admits the peakon solution. Some main results are presented containing the local well-posedness for strong solutions in subcritical or critical Besov spaces, Holder continuity of the data-to-solution map, the blow-up criterion and the precise blow-up quantity in Sobolev space, and a sufficient condition with regard to the initial data ensuring the occurance of the wave-breaking phenomenon.
引用
收藏
页码:853 / 890
页数:38
相关论文
共 50 条
  • [1] A sine-type Camassa-Holm equation: local well-posedness, Hölder continuity, and wave-breaking analysis
    Guoquan Qin
    Zhenya Yan
    Boling Guo
    Monatshefte für Mathematik, 2022, 199 : 853 - 890
  • [2] Well-posedness, wave breaking and peakons for a modified μ-Camassa-Holm equation
    Qu, Changzheng
    Fu, Ying
    Liu, Yue
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (02) : 433 - 477
  • [3] Wave-breaking and moderate deviations of the stochastic Camassa-Holm equation with pure jump noise
    Chen, Yong
    Duan, Jinqiao
    Gao, Hongjun
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 424
  • [4] Wave-breaking phenomena and persistence properties for a nonlinear dissipative Camassa-Holm equation
    Fu, Shanshan
    Wang, Ying
    APPLICABLE ANALYSIS, 2023, 102 (17) : 4805 - 4827
  • [5] Nonuniform dependence and well-posedness for the generalized Camassa-Holm equation
    Mi, Yongsheng
    Wang, Linsong
    Guo, Boling
    Mu, Chunlai
    APPLICABLE ANALYSIS, 2019, 98 (08) : 1520 - 1548
  • [6] LOCAL WELL-POSEDNESS OF THE CAMASSA-HOLM EQUATION ON THE REAL LINE
    Lee, Jae Min
    Preston, Stephen C.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 3285 - 3299
  • [7] Well-posedness and analyticity for the Cauchy problem for the generalized Camassa-Holm equation
    Mi, Yongsheng
    Mu, Chunlai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (01) : 173 - 182
  • [8] The Cauchy problem and wave-breaking phenomenon for a generalized sine-type FORQ/mCH equation
    Qin, Guoquan
    Yan, Zhenya
    Guo, Boling
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (03): : 619 - 640
  • [9] Wave-Breaking and Peakons for a Modified Camassa-Holm Equation
    Gui, Guilong
    Liu, Yue
    Olver, Peter J.
    Qu, Changzheng
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 319 (03) : 731 - 759
  • [10] The local well-posedness and existence of weak solutions for a generalized Camassa-Holm equation
    Lai, Shaoyong
    Wu, Yonghong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (08) : 2038 - 2063