Spectral norm of random matrices

被引:76
作者
Vu, Van H. [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00493-007-2190-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a new upper bound for the spectral norm of symmetric random matrices with independent (but not necessarily identical) entries. Our results improve an earlier result of Furedi and Komlos.
引用
收藏
页码:721 / 736
页数:16
相关论文
共 8 条
[1]   On the concentration of eigenvalues of random symmetric matrices [J].
Alon, N ;
Krivelevich, M ;
Vu, VH .
ISRAEL JOURNAL OF MATHEMATICS, 2002, 131 (1) :259-267
[2]   Spectral techniques in graph algorithms [J].
Alon, N .
LATIN '98: THEORETICAL INFORMATICS, 1998, 1380 :206-215
[3]  
ALON N, 1998, LECT NOTES COMPUT SC, V1380
[4]   THE EIGENVALUES OF RANDOM SYMMETRIC-MATRICES [J].
FUREDI, Z ;
KOMLOS, J .
COMBINATORICA, 1981, 1 (03) :233-241
[5]   Approximating the independence number and the chromatic number in expected polynomial time [J].
Krivelevich, M ;
Vu, VH .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2002, 6 (02) :143-155
[6]  
Mehta M L., 1991, Random Matrices
[7]   Universality at the edge of the spectrum in Wigner random matrices [J].
Soshnikov, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 207 (03) :697-733
[8]   ON THE DISTRIBUTION OF THE ROOTS OF CERTAIN SYMMETRIC MATRICES [J].
WIGNER, EP .
ANNALS OF MATHEMATICS, 1958, 67 (02) :325-327