Bandgap Widening of Phase Quilted, 2D MoS2 by Oxidative Intercalation

被引:76
作者
Song, Sung Ho [1 ]
Kim, Bo Hyun [1 ]
Choe, Duk-Hyun [2 ]
Kim, Jin [1 ]
Kim, Dae Chul [1 ]
Lee, Dong Ju [1 ]
Kim, Jung Mo [1 ]
Chang, Kee Joo [2 ]
Jeon, Seokwoo [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Phys, Dept Mat Sci & Engn, Graphene Res Ctr KI Nano Century, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
TRANSITION-METAL DICHALCOGENIDES; OXIDIZED GRAPHENE FLAKES; PHOTOLUMINESCENCE; MONOLAYER; GAPS; MOO3;
D O I
10.1002/adma.201500649
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Controllable bandgap widening from 1.8 to 2.6 eV is reported from oxidized MoS2 sheets that are composed of quilted phases of various MoSxOy flakes. The exfoliated flakes have large size (≥100 μm × 100 μm) sheets with average thickness of 1.7 nm. Remarkably, fine reversible tuning of the bandgap is achieved by postprocessing sulfurization of the MoSxOy sheets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:3152 / 3158
页数:7
相关论文
共 46 条
[1]   Tunable Plasmon Resonances in Two-Dimensional Molybdenum Oxide Nanoflakes [J].
Alsaif, Manal M. Y. A. ;
Latham, Kay ;
Field, Matthew R. ;
Yao, David D. ;
Medehkar, Nikhil V. ;
Beane, Gary A. ;
Kaner, Richard B. ;
Russo, Salvy P. ;
Ou, Jian Zhen ;
Kalantar-zadeh, Kourosh .
ADVANCED MATERIALS, 2014, 26 (23) :3931-3937
[2]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[3]   Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J].
Butler, Sheneve Z. ;
Hollen, Shawna M. ;
Cao, Linyou ;
Cui, Yi ;
Gupta, Jay A. ;
Gutierrez, Humberto R. ;
Heinz, Tony F. ;
Hong, Seung Sae ;
Huang, Jiaxing ;
Ismach, Ariel F. ;
Johnston-Halperin, Ezekiel ;
Kuno, Masaru ;
Plashnitsa, Vladimir V. ;
Robinson, Richard D. ;
Ruoff, Rodney S. ;
Salahuddin, Sayeef ;
Shan, Jie ;
Shi, Li ;
Spencer, Michael G. ;
Terrones, Mauricio ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (04) :2898-2926
[4]   BAND-GAP ENGINEERING - FROM PHYSICS AND MATERIALS TO NEW SEMICONDUCTOR-DEVICES [J].
CAPASSO, F .
SCIENCE, 1987, 235 (4785) :172-176
[5]   Tunable Band Gap Photoluminescence from Atomically Thin Transition-Metal Dichalcogenide Alloys [J].
Chen, Yanfeng ;
Xi, Jinyang ;
Dumcenco, Dumitru O. ;
Liu, Zheng ;
Suenaga, Kazu ;
Wang, Dong ;
Shuai, Zhigang ;
Huang, Ying-Sheng ;
Xie, Liming .
ACS NANO, 2013, 7 (05) :4610-4616
[6]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[7]   Wide bandgap tunability in complex transition metal oxides by site-specific substitution [J].
Choi, Woo Seok ;
Chisholm, Matthew F. ;
Singh, David J. ;
Choi, Taekjib ;
Jellison, Gerald E., Jr. ;
Lee, Ho Nyung .
NATURE COMMUNICATIONS, 2012, 3
[8]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630
[9]   Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers [J].
Duerloo, Karel-Alexander N. ;
Li, Yao ;
Reed, Evan J. .
NATURE COMMUNICATIONS, 2014, 5
[10]   Photoluminescence from Chemically Exfoliated MoS2 [J].
Eda, Goki ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Fujita, Takeshi ;
Chen, Mingwei ;
Chhowalla, Manish .
NANO LETTERS, 2011, 11 (12) :5111-5116