Bifurcation and chaos of a three-species Lotka-Volterra food-chain model with spatial diffusion and time delays

被引:0
作者
Cai, Liying [1 ]
Jia, Xisheng [1 ]
Zhao, Jianmin [1 ]
Cheng, Zhonghua [1 ]
机构
[1] Mech Engn Coll, Dept Equipment Command & Management, Shijiazhuang 050003, Peoples R China
关键词
Hopf bifurcation; food chain; reaction diffusion; delay; stability; chaos; GLOBAL ASYMPTOTIC STABILITY; PULSE VACCINATION STRATEGY; PREDATOR-PREY MODEL; HOPF-BIFURCATION; EPIDEMIC MODEL; BIRTH PULSES; SYSTEM; POPULATION;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a three-species Lotka-Volterra food-chain model with spatial diffusion and time delays is investigated. We first analyze the local stability of the steady states and the existence of Hopf bifurcation to this system under homogeneous Neumann boundary conditions. We consider the effects of impulses on the dynamics of the above food-chain model without spatial diffusion. Numerical simulations show that the system with constant periodic impulsive perturbations admits rich complex dynamics.
引用
收藏
页码:4068 / 4076
页数:9
相关论文
共 33 条
[1]  
BAINOV DD, 1993, LONGMAN SCI TECH HAR, V66, P1023
[2]   Permanence of population growth models with impulsive effects [J].
Ballinger, G ;
Liu, X .
MATHEMATICAL AND COMPUTER MODELLING, 1997, 26 (12) :59-72
[3]   Global analyses in some delayed ratio-dependent predator-prey systems [J].
Beretta, E ;
Kuang, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (03) :381-408
[4]   Stability and Hopf bifurcation for a population delay model with diffusion effects [J].
Busenberg, S ;
Huang, WZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 124 (01) :80-107
[5]  
Collet P., 1980, Iterated Maps on the Interval as Dynamical Systems
[6]   STABLE COEXISTENCE STATES IN THE VOLTERRA-LOTKA COMPETITION MODEL WITH DIFFUSION [J].
COSNER, C ;
LAZER, AC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (06) :1112-1132
[7]   Stability properties of pulse vaccination strategy in SEIR epidemic model [J].
d'Onofrio, A .
MATHEMATICAL BIOSCIENCES, 2002, 179 (01) :57-72
[9]   Bifurcation and chaos in a ratio-dependent predator-prey system with time delay [J].
Gan, Qintao ;
Xu, Rui ;
Yang, Pinghua .
CHAOS SOLITONS & FRACTALS, 2009, 39 (04) :1883-1895
[10]  
Gopalsamy K., 2013, STABILITY OSCILLATIO, V74