DIFFERENTIALLY PRIVATE LEARNING OF GEOMETRIC CONCEPTS

被引:0
作者
Kaplan, Haim [1 ,2 ]
Mansour, Yishay [1 ,2 ]
Matias, Yossi [2 ]
Stemmer, Uri [1 ,2 ]
机构
[1] Tel Aviv Univ, Tel Aviv, Israel
[2] Google Israel, Tel Aviv, Israel
关键词
differential privacy; PAC learning; polygons; SAMPLE COMPLEXITY; NOISE; BOUNDS;
D O I
10.1137/21M1406428
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present efficient differentially private algorithms for learning unions of polygons in the plane (which are not necessarily convex). Our algorithms are (alpha , beta)-probably approximately correct and (epsilon, delta)-differentially privacy using a sample of size O(1/alpha?klogd), where the domain is [d]x[d] and k is the number of edges in the union of polygons
引用
收藏
页码:952 / 974
页数:23
相关论文
共 34 条
[1]  
ABOWD J. M., 2016, Technical report
[2]  
ALON N., 2018, ABS180600949 CORR
[3]  
Alon Noga, 2020, P MACHINE LEARNING R, P119
[4]  
Bassily R, 2018, ADV NEUR IN, V31
[5]  
Beimel Amos, 2013, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Algorithms and Techniques. 16th International Workshop, APPROX 2013 and 17th International Workshop, RANDOM 2013. Proceedings: LNCS 8096, P363, DOI 10.1007/978-3-642-40328-6_26
[6]  
Beimel A, 2010, LECT NOTES COMPUT SC, V5978, P437, DOI 10.1007/978-3-642-11799-2_26
[7]  
Beimel Amos, 2013, ITCS, P97, DOI DOI 10.1145/2422436.2422450
[8]  
Beimel Amos, 2015, P 26 ANN ACM SIAM S, P461
[9]   LEARNABILITY AND THE VAPNIK-CHERVONENKIS DIMENSION [J].
BLUMER, A ;
EHRENFEUCHT, A ;
HAUSSLER, D ;
WARMUTH, MK .
JOURNAL OF THE ACM, 1989, 36 (04) :929-965
[10]   An Equivalence Between Private Classification and Online Prediction [J].
Bun, Mark ;
Livni, Roi ;
Moran, Shay .
2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, :389-402