Segmentation and Classification in Digital Pathology for Glioma Research: Challenges and Deep Learning Approaches

被引:64
作者
Kurc, Tahsin [1 ]
Bakas, Spyridon [2 ,3 ,4 ]
Ren, Xuhua [5 ]
Bagari, Aditya [6 ]
Momeni, Alexandre [7 ]
Huang, Yue [8 ]
Zhang, Lichi [5 ]
Kumar, Ashish [6 ]
Thibault, Marc [7 ]
Qi, Qi [8 ]
Wang, Qian [5 ]
Kori, Avinash [6 ]
Gevaert, Olivier [7 ]
Zhang, Yunlong [8 ]
Shen, Dinggang [9 ,10 ,11 ]
Khened, Mahendra [6 ]
Ding, Xinghao [8 ]
Krishnamurthi, Ganapathy [6 ]
Kalpathy-Cramer, Jayashree [12 ]
Davis, James [13 ]
Zhao, Tianhao [13 ]
Gupta, Rajarsi [1 ,13 ]
Saltz, Joel [1 ]
Farahani, Keyvan [14 ]
机构
[1] SUNY Stony Brook, Dept Biomed Informat, Stony Brook, NY 11794 USA
[2] Univ Penn, Ctr Biomed Image Comp & Analyt, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[5] Shanghai Jiao Tong Univ, Sch Biomed Engn, Inst Med Imaging Technol, Shanghai, Peoples R China
[6] Indian Inst Technol Madras, Dept Engn Design, Chennai, Tamil Nadu, India
[7] Stanford Univ, Dept Med & Biomed Data Sci, Stanford, CA 94305 USA
[8] Xiamen Univ, Sch Informat, Xiamen, Peoples R China
[9] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27515 USA
[10] Univ N Carolina, BRIC, Chapel Hill, NC 27515 USA
[11] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea
[12] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02115 USA
[13] SUNY Stony Brook, Dept Pathol, Stony Brook, NY 11794 USA
[14] NCI, Canc Imaging Program, NIH, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
digital pathology; radiology; segmentation; classification; image analysis; deep learning; GLIOBLASTOMA; RADIOMICS; SYSTEM; IMAGES; RADIOLOGY; INFORMATION;
D O I
10.3389/fnins.2020.00027
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Biomedical imaging Is an important source of information in cancer research. Characterizations of cancer morphology at onset, progression, and in response to treatment provide complementary information to that gleaned from genomics and clinical data. Accurate extraction and classification of both visual and latent image features Is an increasingly complex challenge due to the increased complexity and resolution of biomedical image data. In this paper, we present four deep learning-based image analysis methods from the Computational Precision Medicine (CPM) satellite event of the 21st International Medical Image Computing and Computer Assisted Intervention (MICCAI 2018) conference. One method Is a segmentation method designed to segment nuclei in whole slide tissue images (WSIs) of adult diffuse glioma cases. It achieved a Dice similarity coefficient of 0.868 with the CPM challenge datasets. Three methods are classification methods developed to categorize adult diffuse glioma cases into oligodendroglioma and astrocytoma classes using radiographic and histologic image data. These methods achieved accuracy values of 0.75, 0.80, and 0.90, measured as the ratio of the number of correct classifications to the number of total cases, with the challenge datasets. The evaluations of the four methods indicate that (1) carefully constructed deep learning algorithms are able to produce high accuracy in the analysis of biomedical image data and (2) the combination of radiographic with histologic image information improves classification performance.
引用
收藏
页数:15
相关论文
共 90 条
[11]  
[Anonymous], 31494946 ARXIV
[12]  
[Anonymous], 2011, STAT PARAMETRIC MAPP
[13]  
[Anonymous], WELCOME PYRADIOMICS
[14]  
[Anonymous], P INT MICCAI BRAINL
[15]   RadPath: A Web-based System for Integrating and Correlating Radiology and Pathology Findings During Cancer Diagnosis [J].
Arnold, Corey W. ;
Wallace, W. Dean ;
Chen, Shawn ;
Oh, Andrea ;
Abtin, Fereidoun ;
Genshaft, Scott ;
Binder, Scott ;
Aberle, Denise ;
Enzmann, Dieter .
ACADEMIC RADIOLOGY, 2016, 23 (01) :90-100
[16]  
Bakas S., 2018, CoRR, abs/1811.02629
[17]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[18]   In Vivo Detection of EGFRvIII in Glioblastoma via Perfusion Magnetic Resonance Imaging Signature Consistent with Deep Peritumoral Infiltration: The φ-Index [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Pisapia, Jared ;
Martinez-Lage, Maria ;
Rozycki, Martin ;
Rathore, Saima ;
Dahmane, Nadia ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
CLINICAL CANCER RESEARCH, 2017, 23 (16) :4724-4734
[19]  
Bakas Spyridon, 2016, Brainlesion, V9556, P144, DOI [10.1007/978-3-319-30858-6_1, 10.1007/978-3-319-30858-6_13]
[20]   Epidermal Growth Factor Receptor Extracellular Domain Mutations in Glioblastoma Present Opportunities for Clinical Imaging and Therapeutic Development [J].
Binder, Zev A. ;
Thorne, Amy Haseley ;
Bakas, Spyridon ;
Wileyto, E. Paul ;
Bilello, Michel ;
Akbari, Hamed ;
Rathore, Saima ;
Ha, Sung Min ;
Zhang, Logan ;
Ferguson, Cole J. ;
Dahiya, Sonika ;
Bi, Wenya Linda ;
Reardon, David A. ;
Idbaih, Ahmed ;
Felsberg, Joerg ;
Hentschel, Bettina ;
Weller, Michael ;
Bagley, Stephen J. ;
Morrissette, Jennifer J. D. ;
Nasrallah, MacLean P. ;
Ma, Jianhui ;
Zanca, Ciro ;
Scott, Andrew M. ;
Orellana, Laura ;
Davatzikos, Christos ;
Furnari, Frank B. ;
O'Rourke, Donald M. .
CANCER CELL, 2018, 34 (01) :163-+