Segmentation and Classification in Digital Pathology for Glioma Research: Challenges and Deep Learning Approaches

被引:57
作者
Kurc, Tahsin [1 ]
Bakas, Spyridon [2 ,3 ,4 ]
Ren, Xuhua [5 ]
Bagari, Aditya [6 ]
Momeni, Alexandre [7 ]
Huang, Yue [8 ]
Zhang, Lichi [5 ]
Kumar, Ashish [6 ]
Thibault, Marc [7 ]
Qi, Qi [8 ]
Wang, Qian [5 ]
Kori, Avinash [6 ]
Gevaert, Olivier [7 ]
Zhang, Yunlong [8 ]
Shen, Dinggang [9 ,10 ,11 ]
Khened, Mahendra [6 ]
Ding, Xinghao [8 ]
Krishnamurthi, Ganapathy [6 ]
Kalpathy-Cramer, Jayashree [12 ]
Davis, James [13 ]
Zhao, Tianhao [13 ]
Gupta, Rajarsi [1 ,13 ]
Saltz, Joel [1 ]
Farahani, Keyvan [14 ]
机构
[1] SUNY Stony Brook, Dept Biomed Informat, Stony Brook, NY 11794 USA
[2] Univ Penn, Ctr Biomed Image Comp & Analyt, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[5] Shanghai Jiao Tong Univ, Sch Biomed Engn, Inst Med Imaging Technol, Shanghai, Peoples R China
[6] Indian Inst Technol Madras, Dept Engn Design, Chennai, Tamil Nadu, India
[7] Stanford Univ, Dept Med & Biomed Data Sci, Stanford, CA 94305 USA
[8] Xiamen Univ, Sch Informat, Xiamen, Peoples R China
[9] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27515 USA
[10] Univ N Carolina, BRIC, Chapel Hill, NC 27515 USA
[11] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea
[12] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02115 USA
[13] SUNY Stony Brook, Dept Pathol, Stony Brook, NY 11794 USA
[14] NCI, Canc Imaging Program, NIH, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
digital pathology; radiology; segmentation; classification; image analysis; deep learning; GLIOBLASTOMA; RADIOMICS; SYSTEM; IMAGES; RADIOLOGY; INFORMATION;
D O I
10.3389/fnins.2020.00027
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Biomedical imaging Is an important source of information in cancer research. Characterizations of cancer morphology at onset, progression, and in response to treatment provide complementary information to that gleaned from genomics and clinical data. Accurate extraction and classification of both visual and latent image features Is an increasingly complex challenge due to the increased complexity and resolution of biomedical image data. In this paper, we present four deep learning-based image analysis methods from the Computational Precision Medicine (CPM) satellite event of the 21st International Medical Image Computing and Computer Assisted Intervention (MICCAI 2018) conference. One method Is a segmentation method designed to segment nuclei in whole slide tissue images (WSIs) of adult diffuse glioma cases. It achieved a Dice similarity coefficient of 0.868 with the CPM challenge datasets. Three methods are classification methods developed to categorize adult diffuse glioma cases into oligodendroglioma and astrocytoma classes using radiographic and histologic image data. These methods achieved accuracy values of 0.75, 0.80, and 0.90, measured as the ratio of the number of correct classifications to the number of total cases, with the challenge datasets. The evaluations of the four methods indicate that (1) carefully constructed deep learning algorithms are able to produce high accuracy in the analysis of biomedical image data and (2) the combination of radiographic with histologic image information improves classification performance.
引用
收藏
页数:15
相关论文
共 90 条
  • [1] Radiomics discriminates pseudo-progression from true progression in glioblastoma patients: A large-scale multi-institutional study
    Abrol, Srishti
    Kotrotsou, Aikaterini
    Hassan, Ahmed
    Elshafeey, Nabil
    Idris, Tagwa
    Manohar, Naveen
    Agarwal, Anand
    Hassan, Islam
    Salek, Kamel
    Farid, Nikdokht
    McDonald, Carrie
    Weathers, Shiao-Pei
    Bahrami, Naeim
    Bergamaschi, Samuel
    Elakkad, Ahmed
    Alfaro-Munoz, Kristin
    Moron, Fanny
    Huse, Jason
    Weinberg, Jeffrey
    Ferguson, Sherise
    Kogias, Evangelos
    Heimberger, Amy
    Sawaya, Raymond
    Kumar, Ashok
    de Groot, John
    Law, Meng
    Zinn, Pascal
    Colen, Rivka R.
    [J]. CANCER RESEARCH, 2018, 78 (13)
  • [2] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [3] Automatic mass detection in mammograms using deep convolutional neural networks
    Agarwal, Richa
    Diaz, Oliver
    Llado, Xavier
    Yap, Moi Hoon
    Marti, Robert
    [J]. JOURNAL OF MEDICAL IMAGING, 2019, 6 (03)
  • [4] In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature
    Akbari, Named
    Bakas, Spyridon
    Pisapia, Jared M.
    Nasrallah, MacLean P.
    Rozycki, Martin
    Martinez-Lage, Maria
    Morrissette, Jennifer J. D.
    Bilello, Michel
    Dahmane, Nadia
    O'Rourke, Donald M.
    Davatzikos, Christos
    [J]. NEURO-ONCOLOGY, 2018, 20 (08) : 1068 - 1079
  • [5] Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in H&E images
    Al-Milaji, Zahraa
    Ersoy, Ilker
    Hafiane, Adel
    Palaniappan, Kannappan
    Bunyak, Filiz
    [J]. PATTERN RECOGNITION LETTERS, 2019, 119 : 214 - 221
  • [6] Alom MZ, 2018, PROC NAECON IEEE NAT, P228, DOI 10.1109/NAECON.2018.8556686
  • [7] [Anonymous], P 3 INT WORKSH BRAIN
  • [8] [Anonymous], 2018, IDENTIFYING BEST MAC
  • [9] [Anonymous], J NUCL MED
  • [10] [Anonymous], INT MICCAI BRAINL WO