A Multi-species ASEP(q,j) and q-TAZRP with Stochastic Duality

被引:26
作者
Kuan, Jeffrey [1 ]
机构
[1] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
SYMMETRIES; MODELS;
D O I
10.1093/imrn/rnx034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article introduces a multi-species version of a process called ASEP(q, j). In this process, up to 2j particles are allowed to occupy a lattice site, the particles drift to the right with asymmetry q(2j) is an element of (0, 1), and there are n-1 species of particles in which heavier particles can force lighter particles to switch places. Assuming closed boundary conditions, we explicitly write the reversible measures and a self-duality function, generalizing previously known results for two-species ASEP and single-species ASEP(q, j). Additionally, it is shown that this multi-species ASEP(q, j) is dual to its spacereversed version, in which particles drift to the left. As j -> infinity, this multi-species ASEP(q, j) converges to a multi-species q-TAZRP and the self-duality function has a non-trivial limit, showing that this multi-species q-TAZRP satisfies a space-reversed self-duality. The construction of the process and the proofs are accomplished utilizing spin j representations of U-q(gl(n)), extending the approach used for single-species ASEP(q, j).
引用
收藏
页码:5378 / 5416
页数:39
相关论文
共 32 条
[1]   Order of current variance and diffusivity in the rate one totally asymmetric zero range process [J].
Balazs, Marton ;
Komjathy, Julia .
JOURNAL OF STATISTICAL PHYSICS, 2008, 133 (01) :59-78
[2]   Microscopic concavity and fluctuation bounds in a class of deposition processes [J].
Balazs, Marton ;
Komjathy, Julia ;
Seppaelaeinen, Timo .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (01) :151-187
[3]   Quantum Algebra Symmetry of the ASEP with Second-Class Particles [J].
Belitsky, V. ;
Schuetz, G. M. .
JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (04) :821-842
[4]   Self-duality for the two-component asymmetric simple exclusion process [J].
Belitsky, V. ;
Schuetz, G. M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (08) :083302
[5]  
Belitsky V., ARXIV160604587V1
[6]   FROM DUALITY TO DETERMINANTS FOR q-TASEP AND ASEP [J].
Borodin, Alexei ;
Corwin, Ivan ;
Sasamoto, Tomohiro .
ANNALS OF PROBABILITY, 2014, 42 (06) :2314-2382
[7]   Asymmetric Simple Exclusion Process with Open Boundaries and Koornwinder Polynomials [J].
Cantini, Luigi .
ANNALES HENRI POINCARE, 2017, 18 (04) :1121-1151
[8]  
Carinci G., PROBABILITY THEORY R, DOI [10.1007/s0040-015-0674-0, DOI 10.1007/S0040-015-0674-0]
[9]  
Carinci G, 2016, J STAT PHYS, V163, P239, DOI 10.1007/s10955-016-1473-4
[10]  
Corteel S., ARXIV151005023