Multi-View Subspace Clustering

被引:499
作者
Gao, Hongchang [1 ]
Nie, Feiping [1 ]
Li, Xuelong [2 ]
Huang, Heng [1 ]
机构
[1] Univ Texas Arlington, Comp Sci & Engn, Arlington, TX 76019 USA
[2] Chinese Acad Sci, XIOPM, Ctr OPTIMAL, Xian 710119, Peoples R China
来源
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV) | 2015年
基金
美国国家科学基金会;
关键词
D O I
10.1109/ICCV.2015.482
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For many computer vision applications, the data sets distribute on certain low-dimensional subspaces. Subspace clustering is to find such underlying subspaces and cluster the data points correctly. In this paper, we propose a novel multi-view subspace clustering method. The proposed method performs clustering on the subspace representation of each view simultaneously. Meanwhile, we propose to use a common cluster structure to guarantee the consistence among different views. In addition, an efficient algorithm is proposed to solve the problem. Experiments on four benchmark data sets have been performed to validate our proposed method. The promising results demonstrate the effectiveness of our method.
引用
收藏
页码:4238 / 4246
页数:9
相关论文
共 26 条
  • [1] [Anonymous], IMAGE
  • [2] [Anonymous], 2011, P NIPS
  • [3] Belkin M, 2002, ADV NEUR IN, V14, P585
  • [4] Cai X., 2001, IEEE C COMP VIS PATT, P1977
  • [5] Cai Xiao, 2013, 23 INT JOINT C ART I
  • [6] Chen N., 2010, P INT C NEUR INF PRO, P361
  • [7] A multibody factorization method for independently moving objects
    Costeira, JP
    Kanade, T
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 29 (03) : 159 - 179
  • [8] Histograms of oriented gradients for human detection
    Dalal, N
    Triggs, B
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 886 - 893
  • [9] Dueck D, 2007, IEEE I CONF COMP VIS, P198
  • [10] Sparse Subspace Clustering: Algorithm, Theory, and Applications
    Elhamifar, Ehsan
    Vidal, Rene
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) : 2765 - 2781