An aqueous soluble polymer such as hydroxypropyl methylcellulose (HPMC), which is widely used in oral sustained-release drug delivery systems, swells when it comes into contact with an aqueous environment. In core-in-cup systems the swelling of the HPMC splits open the cup portion of the tablet. This study investigated the use of acacia, tragacanth, polyethylene glycol 6000 (PEG 6000), and hydroxyethylcellulose (HEC) as possible alternatives to the use of HPMC to control the release of caffeine (soluble) and ibuprofen (insoluble) from core-in-cup compressed tablets. It also investigated the possibility of producing a core-in-cup system that had the ability to release caffeine and ibuprofen for a maximum time of constant release of 8-12 hr. A preliminary study revealed that acacia was most effective for the release of caffeine from the core-in-cup compressed tablets, and that PEG 6000 was most effective for the release of ibuprofen from the core-in-cup compressed tablets. On further investigation it was found that by means of adjusting the hardness of compression and the concentration of polymers used, it was possible to formulate a core-in-cup system that could release drug at a constant rate from the core-in-cup compressed tablets for 8 to 12 hr.