ORBITAL STABILITY OF PEAKONS FOR A MODIFIED CAMASSA-HOLM EQUATION WITH HIGHER-ORDER NONLINEARITY

被引:17
作者
Liu, Xingxing [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Xuzhou 221116, Jiangsu, Peoples R China
关键词
Modified Camassa-Holm equation; higher-order nonlinearity; peakons; orbital stability; CUBIC NONLINEARITY; CAUCHY-PROBLEM; BLOW-UP; SOLITONS; WAVES;
D O I
10.3934/dcds.2018242
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity, which admits the single peakons and multi-peakons. We firstly show the existence of the single peakon and prove two useful conservation laws. Then by constructing certain Lyapunov functionals, we give the proof of stability result of peakons in the energy space H-1(R)-norm.
引用
收藏
页码:5505 / 5521
页数:17
相关论文
共 25 条
[1]   The dual modified Korteweg-de Vries-Fokas-Qiao equation: Geometry and local analysis [J].
Bies, Piotr Michal ;
Gorka, Przemyslaw ;
Reyes, Enrique G. .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
[2]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[3]   Oscillation-induced blow-up to the modified Camassa-Holm equation with linear dispersion [J].
Chen, Robin Ming ;
Liu, Yue ;
Qu, Changzheng ;
Zhang, Shuanghu .
ADVANCES IN MATHEMATICS, 2015, 272 :225-251
[4]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[5]   The trajectories of particles in Stokes waves [J].
Constantin, Adrian .
INVENTIONES MATHEMATICAE, 2006, 166 (03) :523-535
[6]   Analyticity of periodic traveling free surface water waves with vorticity [J].
Constantin, Adrian ;
Escher, Joachim .
ANNALS OF MATHEMATICS, 2011, 173 (01) :559-568
[7]   THE KORTEWEG-DE VRIES EQUATION AND BEYOND [J].
FOKAS, AS .
ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) :295-305
[8]   On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity [J].
Fu, Ying ;
Gui, Guilong ;
Liu, Yue ;
Qu, Changzheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (07) :1905-1938
[9]   Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation [J].
Fuchssteiner, B .
PHYSICA D, 1996, 95 (3-4) :229-243
[10]   Wave-Breaking and Peakons for a Modified Camassa-Holm Equation [J].
Gui, Guilong ;
Liu, Yue ;
Olver, Peter J. ;
Qu, Changzheng .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 319 (03) :731-759