GLOBAL EXISTENCE OF INHOMOGENEOUS INCOMPRESSIBLE ISOTROPIC ELASTODYNAMICS IN THREE DIMENSIONS

被引:1
作者
Cui, Xiufang [1 ]
Yin, Silu [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[2] Hangzhou Normal Univ, Dept Math, Hangzhou, Zhejiang, Peoples R China
基金
中国博士后科学基金;
关键词
inhomogeneous incompressible elastodynamics; Lagrangian coordinates; generalized vector fields; LINEAR WAVE-EQUATIONS; NULL CONDITION; SYSTEMS; BLOWUP;
D O I
10.1137/17M1143113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the Cauchy problem of the incompressible isotropic elastodynamics in three dimensions. The homogeneous case was studied by Sideris and Thomases [Comm. Pure Appi. Math., 58 (2005), pp. 750-788; Comm. Pure Appl. Math., 60 (2007), pp. 1707-1730] in Euler coordinates. Here we generalize their result to the inhomogeneous case and prove the global existence of classical solution in Lagrangian coordinates under the assumption that the density is a small perturbation around a constant state. The generalized energy method is utilized to derive the energy estimates in certain weighted Sobolev spaces.
引用
收藏
页码:4721 / 4751
页数:31
相关论文
共 26 条
[1]   Global existence of nonlinear elastic waves [J].
Agemi, R .
INVENTIONES MATHEMATICAE, 2000, 142 (02) :225-250
[2]  
Alinhac BS, 2001, AM J MATH, V123, P1071
[3]   Blowup of small data solutions for a quasilinear wave equation in two space dimensions [J].
Alinhac, S .
ANNALS OF MATHEMATICS, 1999, 149 (01) :97-127
[4]   Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions - II [J].
Alinhac, S .
ACTA MATHEMATICA, 1999, 182 (01) :1-23
[5]   The null condition for quasilinear wave equations in two space dimensions I [J].
Alinhac, S .
INVENTIONES MATHEMATICAE, 2001, 145 (03) :597-618
[6]  
Cai Y., 2017, ARXIV170301176
[7]   GLOBAL-SOLUTIONS OF NONLINEAR HYPERBOLIC-EQUATIONS FOR SMALL INITIAL DATA [J].
CHRISTODOULOU, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (02) :267-282
[8]  
Grafakos L, 2014, GRAD TEXTS MATH, V250, DOI 10.1007/978-1-4939-1230-8
[10]   BLOW-UP FOR QUASILINEAR WAVE-EQUATIONS IN 3 SPACE DIMENSIONS [J].
JOHN, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (01) :29-51