Fractional modelling and identification of thermal systems

被引:159
作者
Gabano, J. -D. [1 ]
Poinot, T. [1 ]
机构
[1] Ecole Super Ingn Poitiers, Lab Automat & Informat Ind, F-86022 Poitiers, France
关键词
Fractional systems; Non-integer systems; Fractional operator; Modelling; Estimation; Output-error identification; Heat transfer; Diffusive interfaces;
D O I
10.1016/j.sigpro.2010.02.005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Heat transfer in homogeneous media obeys to diffusion phenomenon which can be modelled with the help of fractional systems. In this paper, we use a parsimonious black box model based on an original fractional integrator whose order 1/2 acts only over a limited spectral band. We carried out simulations of front face thermal experimentations which consist in measuring the temperature at the surface of a material where a random heat flux is applied. We consider the characterization of the thermal behaviour of a wall or a sphere. These simulations show the ability of the fractional model, thanks to an output error identification technique, to obtain accurate estimation of diffusion interface temperature evolution as well as frequency response using time data series for the two considered geometries. Experimental results are given in the case of the sphere. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:531 / 541
页数:11
相关论文
共 25 条
  • [1] [Anonymous], P ECC 99 EUR CONTR C
  • [2] [Anonymous], EUROPEAN CONTROL CON
  • [3] Non-integer representation of heat transfer by diffusion - Utility for characterization and non-destructive thermal control
    Battaglia, JL
    Puigsegur, L
    Kusiak, A
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2004, 43 (01) : 69 - 85
  • [4] Approximation and identification of diffusive interfaces by fractional models
    Benchellal, A.
    Poinot, T.
    Trigeassou, J. -C.
    [J]. SIGNAL PROCESSING, 2006, 86 (10) : 2712 - 2727
  • [5] BENCHELLAL A, 2006, C IEEE IND EL SOC 1
  • [6] Beran J., 1992, Statistical Science, V7, P404, DOI 10.1214/ss/1177011122
  • [7] Chen YQ, 2002, IEEE T CIRCUITS-I, V49, P363, DOI 10.1109/81.989172
  • [9] GABANO JD, 2009, 15 IFAC S SYST ID SA
  • [10] GABANO JD, 2008, FRACTIONAL DIFFERENT