Exponential random graph models for the Japanese bipartite network of banks and firms

被引:5
作者
Chakraborty, Abhijit [1 ]
Krichene, Hazem [1 ]
Inoue, Hiroyasu [1 ]
Fujiwara, Yoshi [1 ]
机构
[1] Univ Hyogo, Grad Sch Simulat Studies, Kobe, Hyogo, Japan
来源
JOURNAL OF COMPUTATIONAL SOCIAL SCIENCE | 2019年 / 2卷 / 01期
关键词
Exponential random graph; Bipartite network; Bernoulli model; Two-star model;
D O I
10.1007/s42001-019-00034-y
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
We use the exponential random graph models to understand the network structure and its generative process for the Japanese bipartite network of banks and firms. One of the well-known and simple models of the exponential random graph is the Bernoulli model which shows that the links in the bank-firm network are not independent from each other. Another popular exponential random graph model, the two-star model, indicates that the bank-firms are in a state where the macroscopic variables of the system can show large fluctuations. Moreover, the presence of high fluctuations reflects a fragile nature of the bank-firm network.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 19 条
[11]  
Park J, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066146
[12]  
Park J, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066117
[13]  
Ripley RuthM., 2011, MANUAL RSIENA
[14]   Exponential Random Graph Modeling for Complex Brain Networks [J].
Simpson, Sean L. ;
Hayasaka, Satoru ;
Laurienti, Paul J. .
PLOS ONE, 2011, 6 (05)
[15]  
Snijders T. A. B., 2002, Journal of Social Structure, V3, P1
[16]  
SOLOMONOFF RAY, 1951, BULL MATH BIOPHYS, V13, P107, DOI 10.1007/BF02478357
[17]   ON A GENERAL-CLASS OF MODELS FOR INTERACTION [J].
STRAUSS, D .
SIAM REVIEW, 1986, 28 (04) :513-527
[18]   Exponential random graph model specifications for bipartite networks A dependence hierarchy [J].
Wang, Peng ;
Pattison, Philippa ;
Robins, Garry .
SOCIAL NETWORKS, 2013, 35 (02) :211-222
[19]   Board interlocking network and the design of executive compensation packages [J].
Wong, Ling Heng Henry ;
Gygax, Andre F. ;
Wang, Peng .
SOCIAL NETWORKS, 2015, 41 :85-100