On the Cauchy problem for certain system of semilinear parabolic equations

被引:2
作者
Jian, HY [1 ]
Chen, DG [1 ]
机构
[1] Tsing Hua Univ, Dept Appl Math, Beijing 100084, Peoples R China
来源
ACTA MATHEMATICA SINICA-NEW SERIES | 1998年 / 14卷 / 01期
关键词
system of parabolic equations; nonlinear; global existence; sectorial operator; a priori estimate; fundamental solution;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the-abstract theory of semilinear parabolic equations and a priori estimate techniques to prove the global existence and uniqueness of smooth solutions to the Cauchy problem for the following system gf parabolic equations psi(t) = -(sigma-alpha)psi - sigma theta(x) + alpha psi(xx), theta(t) = -(1 - beta)theta + nu psi(x) + (psi theta)(x) + beta theta(xx).
引用
收藏
页码:27 / 34
页数:8
相关论文
共 8 条
[1]  
Adams R.A., 1975, SOBOLEV SPACES
[2]  
HENRY D., 1980, LECT NOTES MATH, V840
[3]  
HSIAO L, 1997, J MATH ANAL APPL
[4]   ON PARTIAL-DIFFERENTIAL EQUATIONS RELATED TO LORENZ SYSTEM [J].
HSIEH, DY .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (07) :1589-1597
[5]  
Ladyzhenskaya A., 1968, TRANSL MATH MONOGR, V23
[6]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[7]  
2
[8]  
Tang S. Q., 1995, Ph.D Thesis